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Abstract. Petri nets are a well-known graphical language for concep-
tual modelling. We propose a new model called Petri nets with discrete
variables (PNDVs) that permits additional modelling convenience over
classical Petri nets. We show that PNDVs are Turing complete and give a
limited subset with the same expressive power as Petri nets. Moreover, we
demonstrate that PNDVs can simulate bounded discrete timed-arc Petri
nets. We apply heuristic algorithms for reachability analysis of PNDVs
with a tool, we have developed called PeTe. Finally, we demonstrate the
advantages of these algorithms with experimental results from using this
tool.

1 Introduction

Model checking is a widely used technique for automatic verification of systems.
This technique is used to verify the correctness of systems. Model-checking has
also been applied to concurrent systems, where a widely-used model called Petri
nets is used for the analysis and verification of these.

Petri nets (PNs) is a graphical language originally proposed by C.A. Petri
in [16] for conceptual modelling of the flow of information in systems. Since
then, there has been developed a number of classes of PNs to accommodate
an increased need for descriptive power. Among these are timed-arc Petri nets
(TAPNs) [9] that enable the specification and verification of real-time systems,
as well as colored Petri nets (CPNs) [11], a versatile high-level type of PN which
can be used for the specification, implementation and simulation of complex
systems.

PNs can become complicated when expressing large systems, this is due to the
limited set of basic constructs available in the language. For instance, some sys-
tems require additional constraints in order to ensure that the model is bounded,
i.e. a bounded PN. A well-known modelling trick to ensure boundedness is using
complementary-place transformation [3]. In conceptual modelling this construc-
tion may be undesirable due to the introduction of redundant information and
artificial elements into the model, requiring users of the model to recognize and
ignore redundancy. Moreover, the model can be harder to visualize, since sim-
plicity is sacrificed in order to ensure boundedness.

We propose a new model called Petri nets with discrete variables (PNDVs)
that primarily seeks to add modelling convenience and compactness to PNs,
while at the same time ensuring that verification is possible. This model is a
PN extended with a set of finite global integer variables, used in pre-conditions



and post-assignments on transitions. This provides a compact way of exploiting
common encoding tricks used in PNs.

With the PNDV model, boundedness can be expressed in a more compact
way with guards on transitions using discrete variables, hence redundant places
are not required. In addition, inhibitor arcs can be simulated without the need
for a new type of arc, nor the complementary place construction, as this can be
expressed with guards on transitions in PNDVs. Besides these modelling capa-
bilities it is straightforward to model systems which alter the state of variables
through sequences of transitions.

Moreover, we present a reduction from bounded discrete timed arc Petri nets
(DTAPNs) to PNDVs that demonstrates how PNDVs can be used for deciding
marking reachability for DTAPNs.

Finally, we have developed a tool called PeTe (PeTri net Engine) for mod-
elling and verification of PNDVs and PNs. This tool will be used to conduct
reachability experiments with various heuristics. In addition, PeTe implements
an algorithm for translating bounded DTAPNs into PNDVs. Experimental re-
sults show that the heuristics we have developed for reachability analysis are
significantly faster than naive and randomized depth first search.

1.1 Related Work

The addition of variables in PNs has been done before with colored Petri nets
(CPNs) that allow the execution of arbitrary program code when firing transi-
tions, e.g. CPN Tools [17,11], a tool for simulating and analyzing CPNs, supports
the functional programming language Standard ML.

The Petri net model we propose is different from CPNs, i.e. in PNDVs tokens
are not colored (do not carry data), data structures are global and finite (and
only permit integer variables), the guards imposed on transitions are restricted
and do not allow for execution of code. It is well-known that the verification
problems, such as reachability, coverability and boundedness, concerning CPNs
are undecidable. Hence, model checking can be impossible for unbounded and
even bounded CPNs [13]. PNDVs provides modelling convenience while guaran-
teeing decidability of the aforementioned model-checking problems for bounded
nets. PNDVs have the same modelling power as PNs with inhibitor arcs. As we
shall see later, we introduce p-free PNDVs, which correspond to ordinary PNs,
but still with many of the modelling capabilities available.

We give a reduction from bounded DTAPNs to PNDVs for reachability anal-
ysis. In general reachability for DTAPNs is undecidable [18], however Escrig
showed that finite timed reachability for unbounded DTAPNs is decidable by
only simulating time up to some instant in [8]. Our approach works for bounded
DTAPNs and uses a technique where tokens in each place are aged up to a max-
imal value. Then for delays larger than this value, tokens are no longer aged.
This is similar to a technique used by Escrig in [18], where state graphs are used
for reachability analysis on bounded TAPNs (real-valued time).

Outline: The next section will cover preliminaries for the rest of this paper.
In Section 3 we introduce PNDVs. In Section 4 we introduce a subset of PNDVs
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with the same expressive power as ordinary PNs. Section 5 describes a reduction
from bounded DTAPNs to PNDVs for deciding reachability. In Section 6 algo-
rithms for reachability analysis and experimental results are presented. Finally,
in Section 7 we give conclusions and ideas for future work.

2 Preliminaries

Before we cover modelling and verification of PNDVs in more detail, we introduce
the required terminology and definitions for PNs and the new PNDV model.

Let N denote the set of natural numbers including zero and Z the set of
integers.

Definition 1. (Petri net with inhibitor arcs) A Petri net with inhibitor arcs is
a quadruple N = (P, T, F, Inhb) , where

– P is a finite set of places,
– T is a finite set of transitions, where P ∩ T = ∅,
– F : (P × T ) ∪ (T × P )→ N is the flow function.
– Inhb ⊆ P×T is the set of inhibitor arcs, s.t. (p, t) ∈ Inhb implies F (p, t) = 0.

Let N = (P, T, F, Inhb) be a PN. A marking is a mapping M : P → N that
assigns tokens to places. The setM(N) denotes the infinite set of all markings on
N . If Inhb = ∅ then N is said to be an ordinary PN, for convenience we will write
this as a triple N = (P, T, F ). A marked PN is a pair (N,M0), where M0 is an
initial marking on N . The preset •y for a place or transition y is defined as •y =
{z ∈ P ∪T | F (z, y) > 0}, likewise, the postset is y• = {z ∈ P ∪T | F (y, z) > 0}.
We denote the inhibitor places for a transition t as Inhb(t) = {p | (p, t) ∈ Inhb}.
Given marking M, we say a transition t is enabled if it holds that

∀p ∈ •t : F (p, t) ≤M(p) ∧ ∀p ∈ Inhb(t) : M(p) = 0

A transition t can fire if it is enabled, which leads to a new marking M ′, where

M ′(p) = M(p) − F (p, t) + F (t, p) for every place p ∈ P . We write M
t→ M ′ if

from the marking M by firing t we reach the marking M ′. We write M → M ′

if M
t→ M ′ for some t ∈ T . The reflexive transitive closure of → is

∗→. Let
R(M0) = {M ′ |M0

∗→M ′} denote the set of all reachable markings from initial
marking M0. A marking M ′ is said to be reachable from the initial marking M0

if M ′ ∈ R(M0).
We define a logic for reachability of PNs with meta-variables and syntactic

categories for expressions ex ∈ Exprx and conditions cx ∈ Condx. The logic is
defined as follows

ex ::= z | p | ex ⊕ ex, where z ∈ Z, p ∈ P , ⊕ ∈ {+,−, ∗} (1)

cx ::= ex ./ ex | cx ∨ cx | cx ∧ cx | ¬cx, where ./∈ {=, <,≤, >,≥, 6=} (2)

A marking M satisfies a condition cx, denoted M |= cx, if by replacing p in cx
with M(p) for all p ∈ P the formula evaluates to true. We say that a query
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cx ∈ Condx is satisfiable if there exists a reachable marking M ∈ R(M0) s.t.
M |= cx.

PNs are illustrated as usual, where circles are places, tokens are black dots
on places, transitions are black rectangles, input and output arcs are drawn as
arrows, while inhibitor arcs are straight lines with a small circle at the end.
An inscription on an arc denotes that its weight is greater than one. Figure 1
illustrates a PN simulating a computer scientist. A token in the place inactive
means that the computer scientist is inactive, while a token in places coffee
machine and pizza indicates that there is coffee and pizza available. The inhibitor
arc between pizza and grab coffee prevents the computer scientist from grabbing
a cup of coffee when pizza is available; leaving eat pizza the only transition
enabled, when inactive. Once the pizza has been consumed, the transition grab
coffee can be fired, allowing the computer scientist to work and output a paper.

inactive

grab coffee

working

coffee machine

output paper

pizza eat pizza

Fig. 1: A Petri net model of a computer scientist

3 Petri Nets with Discrete Variables

A Petri net with discrete variables (PNDV) is a PN extended with a finite set of
integer variables, X = {x1, . . . , xm}, and pre- and post-conditions on transitions.
We define the meta-variables and syntactic categories for expressions e ∈ Expr,
conditions c ∈ Cond and assignments a ∈ Assign.

The language describing expressions and conditions over X and places P is

e ::= x | z | p | e⊕ e, where x ∈ X, z ∈ Z, p ∈ P , ⊕ ∈ {+,−, ∗} (3)

c ::= e ./ e | c ∨ c | c ∧ c | ¬c, where ./∈ {=, <,≤, >,≥, 6=} (4)

a ::= (x1 := e1, x2 := e2, . . . , xm := em), where e1, . . . , em ∈ Expr (5)

For convenience we may choose to write only the variables that are changed
in an assignment, e.g. a = (xi := ei, xj := ej) if only xi, xj are changed.
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Definition 2. (Petri net with discrete variables) A PNDV is a 7-tuple N =
(P, T,X,Range, F,Pre,Post) , where P , T and F are as defined for PNs and

– X = {x1, . . . , xm} is a finite set of integer variables,
– Range : X → N \ {0} assigns the maximum values for variables in X,
– Pre : T → Cond is a mapping from transitions to pre-conditions, and
– Post : T → Assign maps transitions to post-assignments.

Let N = (P, T,X,Range, F,Pre,Post) be a PNDV. A valuation is a function
V : X → N, where V (x) ≤ Range(x) for all x ∈ X. All valuations on N are
denoted V(N). A state on N is a pair S = (M,V ) ∈M(N)×V(N), where M is
a marking and V is a valuation. The set of all states on N is defined as S(N) =
M(N) × V(N). A marked PNDV is a pair (N,S0), where S0 = (M0, V0) is the
initial state on N and V0(x) = 0 for all x ∈ X. We say that a state S = (M,V )
satisfies a pre-condition c ∈ Cond, denoted S |= c, if by replacing the places and
variables in c with the corresponding values from M and V , the formula evaluates
to true. Given a state S, an expression e ∈ Expr evaluates to a new value V ∈ Z,
denoted V = eval(e, S). An assignment a = (x1 := e1, . . . , xm := em) ∈ Assign
evaluates to a new valuation V ′ = eval(a, S), where for all i : 1 ≤ i ≤ m

eval(a, S)(xi) = eval(ei, S) mod (Range(xi) + 1). (6)

Note that Range(xi) is the largest value xi can have. Let S = (M,V ) be a
state on N and t ∈ T a transition, we say that t is enabled in S if it holds that

∀p ∈ •t : F (p, t) ≤M(p) ∧ S |= Pre(t) (7)

If t is enabled in S, it can fire, which leads to a new state S′, such that
the resulting state obtained by firing t is S′ = (M ′, eval(Post(t), S)), where
M ′(p) = M(p)− F (p, t) + F (t, p) for every place p ∈ P . The transition relation

of PNDVs is similar to that of PNs. We write S
t→ S′ if by firing t from state

S we reach state S′. We write S → S′ if S
t→ S′ for some t ∈ T . The reflexive

transitive closure of → is
∗→. Let R(S0) = {S′ | S0

∗→ S′} denote the set of all
reachable states from the initial state S0. A state S′ is said to be reachable from
the initial state S0 if S′ ∈ R(S0).

Similar to PNs, when querying reachability on PNDVs we use the Cond
language. We say that a query c ∈ Cond is satisfiable if there exists a reachable
state S ∈ R(S0) s.t. S |= c.
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3.1 Producer-Consumer Example

Now we shall see a variant of a producer-consumer (PC) system modelled with
a PNDV. A PC system usually contains at least one producer process and a
consumer process. The producer delivers objects to the consumer. To avoid over-
whelming the consumer, objects are placed into a bounded buffer. A variation
of a PC system is shown in Figure 2 with an extra producer, where pre- and
post-conditions are shown as labels immediately next to transitions prefixed with
pre: and post:, respectively. The consumer receives objects from two producers
taking turns to add objects, i.e. tokens, to the buffer. The variable B indicates
which producer is active. Since there are two producers, B = 0 or B = 1, i.e.
Range(B) = 1. To ensure boundedness, the buffer place can hold a maximum
of two tokens. For a producer to output a token to the buffer, the buffer place
must contain less than two tokens and B must have the value corresponding to
its pre-condition. When take is fired the active producer is swapped (recall that
the value of B wraps around when overflow happens).

buffer

a0

produceA a1

b0

produceB b1

outputB

c0

take

c1

consume

outputA
pre : buffer < 2 ∧B = 0

pre : buffer < 2 ∧B = 1

post : B := B + 1;

Fig. 2: A PNDV model of a producer-consumer system

3.2 Expressiveness of the PNDV Model

Here we will discuss the expressiveness of PNDVs. Recall that the language
defined in Section 3 allows us to construct conditions that include places. The
motivation for enabling these kinds of conditions is a convenient way of testing for
zero, similar to the way inhibitor arcs work. However, PNs with inhibitor arcs are
Turing complete [15], consequently reachability, coverability and boundedness
are undecidable.

Theorem 1. PNDVs have full Turing power.

Proof. We can reduce an PN with inhibitor arcs N = (P, T, F, Inhb) into a
PNDV N ′ = (P, T, ∅,Range, F,Pre,Post), where Pre(t) = {

∧
p∈Inhb(t) p = 0} for

all t ∈ T . Clearly, the labelled transition systems of N and N ′ are isomorphic,
since the pre-condition for a transistion t is only satisfied if every place p ∈
Inhb(t) is empty. Thus, PNDVs have full Turing power, since they can simulate
PNs with inhibitor arcs. ut
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4 P-Free PNDV

We introduce a subclass of PNDVs with computational power equivalent to
that of a PN. We call this subclass p-free, since places cannot be referenced in
conditions and assignments. We define p-free expressions Exprp as the subset
of expressions Expr where places p ∈ P do not occur. Similarly, we define p-free
conditions Condp ⊂ Cond and p-free assignments Assignp ⊂ Assign as the
respective subsets where p does not occur.

Definition 3. A PNDV N = (P, T,X,Range, F,Pre,Post) is p-free if Pre(t) ∈
Condp and Post(t) ∈ Assignp for all t ∈ T .

Since a p-free condition cp ∈ Condp cannot reference any places, it can be
evaluated given only a valuation V . Likewise, a p-free assignment ap ∈ Assignp

can be evaluated given a valuation V , denoted V ′ = eval(ap, V ), defined as in
Equation 6 with eval(ei, V ), instead of eval(ei, S).

A p-free PNDV N = (P, T,X,Range, F,Pre,Post) can be translated into a
PN N ′ = (P ′, T ′, F ′) by creating new bounded places to simulate the variables.
This is done by creating places px and complement places px for each variable
x ∈ X. The number of tokens in place px is the value of x and place px bounds
the place s.t. px + px = Range(x). A transition tV is introduced in N ′ for each
valuation V satisfying Pre(t) for every transition t ∈ T .

p1

· · ·

pn

t

· · ·
q1 qm

x0

...

xk

⇒
p1

· · ·

pn

tV

qm

· · ·
q1

pxk

pxk

...

V (xk)

V ′(xk)

Range(xk)−V (xk)

Range(xk)−V ′(xk)

Fig. 3: A reduction from p-free PNDV to PN, where V ′ = eval(Post(t), V )

Figure 3 shows how two places are created for each variable in the p-free
PNDV and how these are connected to a transition tV , which the translated net
may have exponentially many of. The pseudo code for this translation is listed
in Algorithm 1.

Remark 1. Given a p-free PNDV N = (P, T,X,Range, F,Pre,Post) the result-
ing PN N ′ = p-free-PNDV-to-PN(N), from translation using Algorithm 1,
can be exponential in the size of N . Algorithm 1 creates |P |+ 2 · |X| places, but
the number of transitions is bounded by O(|T | ·

∏
x∈X Range(x)).

7



Algorithm 1 Conversion from p-free PNDV to PN

1: function p-free-PNDV-to-PN(N)
2: (P, T,X,Range, F,Pre,Post) = N
3: P ′ = P ∪ {px, p′x | x ∈ X}
4: T ′ = ∅
5: for all V ∈ V(N) do . Consider all valuations
6: for all t ∈ T do
7: if V |= Pre(t) then
8: T ′ = T ′ ∪ {tV }
9: for all p ∈ P do . Connect to same places as t

10: F ′(p, tV ) = F (p, t)
11: F ′(tV , p) = F (t, p)
12: end for
13: V ′ = eval(Post(t), V )
14: for all x ∈ X do
15: F ′(px, tV ) = V (x) . Depend on the assumed valuation
16: F ′(p′x, tV ) = Range(x)− V (x)
17: F ′(tV , px) = V ′(x) . Output the resulting valuation
18: F ′(tV , p

′
x) = Range(x)− V ′(x)

19: end for
20: end if
21: end for
22: end for
23: return (P ′, T ′, F ′)
24: end function

Definition 4. Let N1 = (P1, T1, X1,Range1, F1,Pre1,Post1) be a p-free PNDV
and N2 = (P2, T2, F2) = p-free-PNDV-to-PN(N1) be the PN translation of
N1 using Algorithm 1. Let S1 = (M1, V1) on N1 and marking M2 on N2. We say
that S1 corresponds to M2, denoted S1 ≡ M2, if M1(p) = M2(p) for all p ∈ P
and V1(x) = M2(px) = Range(x)−M2(px) for all x ∈ X.

Theorem 2. The labelled transition system (LTS) of a marked p-free PNDV
(N1, S1) is isomorphic to the LTS of its translated marked PN (N2,M2), where
N2 = p-free-PNDV-to-PN(N1) and any M2 s.t. S1 ≡M2.

A proof of Theorem 2 is provided in Appendix A.

Corollary 1. Reachability is decidable for p-free PNDVs.

Proof. Let (N1, S1) be a marked p-free PNDV, then following Theorem 2, it is
possible to construct a marked PN (N2,M2) s.t. its LTS is isomorphic to the
LTS of (N1, S1). Since reachability is decidable for PNs [14,12], it follows that
reachability is deciable for p-free PNDVs. ut

8



5 Discrete Timed-Arc Petri Nets

In this section we shall describe a reduction from bounded (DTAPNs), with
discrete time semantics, to PNDVs that preserves marking reachability. This
reduction demonstrates the full modelling capabilities of PNDVs by showing
that this model can encode bounded DTAPNs for reachability analysis.

Definition 5. (Discrete timed-arc Petri net) A DTAPN is a quadruple D =
(P, T, F, times) , where P and T are defined as for PNs and

– F ⊆ (P × T ) ∪ (T × P ) is the flow relation, and
– times : F |P×T → {[a, b] | a ∈ N, b ∈ N ∪ {∞}} maps intervals to input arcs.

Let D = (P, T, F, times) be a DTAPN. A marking on D is a mapping M :
P → B(N), where B(N) denotes the set of finite multisets of natural numbers.
The natural numbers correspond to the age of the tokens at a given place. The
preset •y of a place or transition y is •y = {z ∈ P ∪ T | (z, y) ∈ F}, the postset
is defined similarly. A marked DTAPN is a pair (D,M0) where D is a DTAPN
and M0 is an initial marking on D s.t. all tokens have age 0.

Given a marking M , a transition t is enabled if there exists a token x ∈M(p)
where x ∈ times(p, t), for all p ∈ •t. If t is enabled in marking M then it can

fire, yielding a new marking M ′, denoted M
t→ M ′, where M ′(p) = (M(p) \

In(p, t)) ∪ Out(t, p) for every place p ∈ P , where \ and ∪ are operations on
multisets,

In(p, t) =

{
{x} if p ∈ •t ∧ x ∈M(p) ∧ x ∈ times(p, t)

∅, otherwise

Out(p, t) =

{
{0}, if p ∈ t•

∅, otherwise

and from each place p ∈ •t, a single token satisfying the age constraint is removed
and a new token of age 0 is added to every place p ∈ t•. Given a marking

M a delay can occur yielding a new marking M ′, denoted M
d→ M ′, where

M ′(p) = {x+ 1 | x ∈M ′(p)} for all p ∈ P . This increments the age of all tokens
by one. For simplicity we assume that a time delay is always 1, as any other
delay can be simulated with this.

A marked DTAPN (D,M0) is said to be k-bounded if it holds that |M(p)| ≤ k
for every place p ∈ P in every reachable marking M ∈ R(M0). For convenience
we may write βi(p, t) to denote bi, for i = 1, 2, when times(p, t) = [b1, b2].

5.1 Reduction From Bounded DTAPN to PNDV

Reachability is known to be undecidable for discrete timed-arc Petri nets
DTAPNs [18]. Nevertheless, reachability is decidable for bounded DTAPNs [5].
In this section we propose a reduction from k-bounded DTAPN D to PNDV N
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that preserves reachability. The overall idea of the reduction is to simulate aging
of up to k tokens in every place and to ensure that time intervals are simulated
correctly. Reduction from a timed model into an untimed model introduces a
number of challenges, presented in the following.

The first problem is how markings on a DTAPN are represented in a PNDV,
since a marking in D associates ages with individual tokens, whereas N only
stores the number of tokens in each place. This problem is solved by storing the
ages of up to k tokens with k variables {x1p, . . . , xkp} for every place p ∈ P .

For example, a marking M on D, where M(p) = {0, 2, 2} is represented
by a state S′ = (M ′, V ′) on N , s.t. M ′(p) = 3, V ′(x1p = 0), V ′(x2p = 2) and
V ′(x3p = 2). Notice that M ′(p) is the number of tokens in p and the variables
x1p, x

2
p and x3p keep track of the age of each token.

For every place p its token variables {x1p, . . . , xkp} are bounded by a maximal
value, MaxAge(p), s.t. enabledness of every transition t ∈ p• is unaffected by
further aging [18]. MaxAge(p) is computed by adding 1 to the maximal interval
endpoint that is not ∞ on the output arcs from p.

MaxAge(p) = 1 + max{βi(p, t) | t ∈ p•, βi(p, t) <∞, i = 1, 2} (8)

To simulate transitions we could introduce a transition for every possible
state, but to avoid exponentially many transitions we simulate one transition
firing M → M ′ in D with multiple transition firings S → S1 → · · · → Sq → S′.
We call the intermediate states S1, . . . , Sq unstable and introduce a lock variable
`. The lock ensures that we avoid undesirable and inconsistent behavior, for
instance, if a token was consumed while aging.

To model transitions in D we insert an interval gadget between every transi-
tion and its input places. Figure 4 illustrates an interval gadget that simulates an
input arc (pi, tj) for transition tj . Token variables for input place pi are shown to
the right. The take-token transitions tui,j , for 1 ≤ u ≤ k, simulate consumption of
token xupi , and are only enabled if there are at least u tokens in pi and token xupi
satisfies the time interval, since the number of tokens in pi denotes the number
of variables to consider for consumption. When token xupi is removed, the post-
condition ensures that the ages of the remaining tokens are preserved. The lock
` is also acquired, guaranteeing that no other transition can begin firing before
tj has finished.

To simulate delays we construct a 1-safe ring of aging gadgets, s.t. all variables
have been incremented by 1 (if the variables are less than their maximum values)
when the token has done a single pass through the ring. Note that the aging ring
also acquires the lock `, such that tokens cannot be consumed while aging. Figure
5 shows the aging gadget for place pi. An age transition tageu,pi increments the token
variable xupi by 1, and is enabled if xupi <MaxAge(pi). The max transition tmax

u,pi
does not increment the token variable, and is enabled when no further aging is
possible, i.e. xupi = MaxAge(pi). Note, tageu,pi and tmax

u,pi are never enabled at the
same time. The aging gadgets for all places are arranged in a ring, where the
first place is marked. The first and last transitions acquire and release the lock
`, see Algorithm 2 step 6 to 8 for details.
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[aij , b
i
j ]

pi

pi,j

=

pi

tui,j
· · ·

t1i,j

· · ·

tki,j

pi,j

...

x1pi

xkpi

Pre(tui,j) = (pi,j = 0 ∧ pi ≥ u) ∧ (aij ≤ xupi ∧ x
u
pi ≤ b

i
j) ∧ (` = 0 ∨ ` = j)

Post(tui,j) = ` := j;∪{xvpi := xv+1
pi | u ≤ v < k}

Fig. 4: An interval gadget [aij , b
i
j ]. Here pi is some place pi ∈ •tj , shown in Figure 6

a1pi

tage1,pi

tmax
1,pi

. . .

tagek−1,pi

tmax
k−1,pi

akpi

tagek,pi

tagek,pi

=pi

a1pi

tagek,pi

tmax
k,pi

Pre(tmax
u,pi) = xupi = MaxAge(pi) Pre(tageu,pi) = xupi <MaxAge(pi)

Post(tageu,pi) = xupi := xupi + 1;

Fig. 5: An aging gadget for one place with at most k tokens

p1

· · ·

pg

tj

· · ·
pg+1 pn

[a1j , b
1
j ] [agj , b

g
j ]⇒

[a1j , b
1
j ] [agj , b

g
j ]

p1

· · ·

pg

p1,j

· · ·
pg,j

tj

pg+1

· · ·
pn

Post(tj) = ` := 0;∪{xup := xu−1
pi ; | pi ∈ t•j , 2 ≤ u ≤ k} ∪ {x1pi := 0; | pi ∈ t•j}

p1

a1p1

tagek,p1

tmax
k,p1

p2

a1p2

tagek,p2

tmax
k,p2

. . .

tagek,pn

tmax
k,pn

Fig. 6: A reduction from a k-bounded DTAPN to PNDV. The diamond shapes repre-
sents either interval or aging gadgets. The aging ring is shown to the right

Figure 6 illustrates the reduction from k-bounded DTAPN to PNDV. When
transition tj fires, it releases the lock ` and shifts the token variables of the places
in its postset, while setting the first token variable to 0. Note that it is possible to
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deadlock in a situation where one of the interval gadgets for tj has acquired the
lock `, but the other interval gadgets for the transition were unable to consume
a token, so tj cannot fire. However, as previously mentioned this reduction only
preserves marking reachability, and not liveness. A formal description of this
reduction is available in Algorithm 2.

Algorithm 2 Reduction from k-bounded DTAPN to PNDV

Input: A k-bounded DTAPN D = (P, T, F, times) with initial marking M0,
where P = {p1, . . . pi, . . . , pn} and T = {t1, . . . tj , . . . , tm}.

Output: A PNDV N = (P ′, T ′, X, F ′, Range, Pre, Post) with initial state
S0 = (M ′0, V0).

1. Create original places and transitions, set P ′ = P and T ′ = T
2. Create variables, X = {`} ∪ {xupi | pi ∈ P, 1 ≤ u ≤ k}, where Range(`) = m + 1

and Range(xupi) = MaxAge(pi) for all xupi ∈ X \ {`}.
3. For each tj ∈ T , release lock and set the first token variable to 0 and shift the

others, for all pi ∈ t•j
Post(tj) = ` := 0;∪{xup := xu−1

pi ; | pi ∈ t•j , 2 ≤ u ≤ k} ∪ {x1pi := 0; | pi ∈ t•j}.
4. For each output arc (tj , pi) ∈ F , set F ′(tj , pi) = 1.
5. For each input arc (pi, tj) ∈ F , create an interval gadget (see Figure 4):

(a) Add intermediate place, set P ′ = P ′ ∪ {pi,j}.
(b) Connect it to tj , set F ′(pi,j , tj) = 1.
(c) Add take-token transitions for interval [aij , b

i
j ] = times(pi, tj), set T ′ = T ′ ∪

{tui,j | 1 ≤ u ≤ k} with pre- and post conditions:
– Pre(tui,j) = (pi,j = 0 ∧ pi ≥ u) ∧ (aij ≤ xupi ∧ x

u
pi ≤ b

i
j) ∧ (` = 0 ∨ ` = j),

– Post(tui,j) = ` := j;∪{xvpi := xv+1
pi | u ≤ v < k}.

(d) Connect these, set F ′(pi, t
u
i,j) = F ′(tui,j , pi,j) = 1, for 1 ≤ u ≤ k.

6. For each place pi ∈ P create an aging gadget (see Figure 5):
(a) Add aging places, set P ′ = P ′ ∪ {aupi | 1 ≤ u ≤ k}.
(b) Add aging transitions, set T ′ = T ′ ∪ {tageu,pi , t

max
u,pi | 1 ≤ u ≤ k}.

(c) Connect aging places and transitions, set
– F ′(aupi , t

w
u,pi) = 1, for 1 ≤ u ≤ k,

– F ′(twu,pi , a
u+1
pi ) = 1, for 1 ≤ u ≤ k − 1, where w ∈ {age,max}.

(d) Create pre- and post-conditions:
– Pre(tageu,pi) = xupi <MaxAge(pi),
– Pre(tmax

u,pi) = xupi = MaxAge(pi),
– Post(tageu,pi) = xupi := xupi + 1;

7. Connect the aging gadgets in a ring:
– F ′(tkpi,w, a

1
pi+1

) = 1, for 1 ≤ i ≤ n− 1,

– F ′(tkpn,w, a
1
p1) = 1 , where w ∈ {age,max}

8. Create start and stop conditions for aging ring:
– Post(tagek,pn

) = ` := 0; xupi := xupi + 1;
– Post(tmax

k,pn) = ` := 0;
– Post(tage1,p1

) = ` := m+ 1; xupi := xupi + 1;
– Post(tmax

1,p1) = ` := m+ 1;
9. Create initial marking, s.t. M ′0(a1p1) = 1 and M ′0(pi) = |M(pi)| for all pi ∈ P .
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5.2 Correctness of the Reduction

In this section we prove the correctness of the reduction. We argue that there
is a correspondence between markings in the original net and the translation,
using a technique similar to the method for relating timed transition systems,
proposed in [6] and [10]. For the rest of this section let (D,M0) be a marked k-
bounded DTAPN and (N,S0) be a marked PNDV translation of (D,M0) using
the reduction.

Definition 6 (Stable state). A state S = (M,V ) on N is said to be stable,
denoted S |= stable, if V (`) = 0.

Definition 7 (Correspondence). Let M ∈ M(D) and S ∈ S(N), M and
S = (M ′, V ′) are said to correspond, denoted M ≡ S, if S |= stable and for all
p ∈ P it holds that

{min(x,MaxAge(p)) | x ∈M(p)} = {V ′(xip) | 1 ≤ i ≤M ′(p)}

, where the left- and right-handside are multisets.

Let ; denote a sequence of transitions S = S0 → S1 → S2 → · · · →
Sm−1 → Sm = S′ in N ′, where S, S′ |= stable and all intermediate states

S1, S2, . . . , Sm−1 6|= stable. The reflexive and transitive closure of ; is
∗
;. The

function tr : Condx → Cond translates conditions, such that tr(cx) = cx∧(` =
0) for all cx ∈ Condx.

Lemma 1. Let M be a marking on D and S be a state on N , where M ≡ S
and α = {t, d}.

1. If M
α→M ′, then S ; S′ such that M ′ ≡ S′.

2. If S ; S′, then M
α→M ′ such that M ′ ≡ S′.

Proof (Sketch). If M
d→ M ′, then an iteration through the aging ring S ; S′

will increment all token variables, if needed. And because of the max application
on the left handside in Definition 7 it does not matter that token variables are

not aged beyond MaxAge(p) for their place p. If M
tj→M ′, then correspondence

between M and S ensures that pi,j can be marked for all i s.t. pi ∈ •tj , thus
ensuring that tj can fire in N , leading to a state S′ corresponding to M ′. Thus,
we have shown the first case 1.

If S ; S′, then one of two things could have happened, (i) N took an
iteration through the aging ring, or (ii) a transition tj was fired setting ` = 0.

In case (i) a delay M
d→ M ′ will increment all token ages by one, again aging

beyond MaxAge(p) for their respective places p will not affect correspondence.
If some transition tj was fired, then clearly tokens satisfying intervals on the

arcs from the preset of tj in D, s.t. M
tj→M ′, must be available in M . Since the

interval gadgets ensure that only tokens satisfying the interval on an input arc
can be consumed by tj . Thus, 2 holds for both case (i) and (ii). ut
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Lemma 2 (Agreement). Let M be a marking on D, S be a state on N , where
M ≡ S, and cx ∈ Condx, then M |= cx if and only if S |= tr(cx).

Proof. By Definition 7, M ≡ S implies that there is the same number of tokens
in each place. Since the condition cx only quantifies over the number of tokens,
it must hold. Note that the definition of correspondence also ensures that S =
(M ′, V ′) is stable, thus V ′(`) = 0. ut

Theorem 3. Let M be a marking on D and S be a state on N , where M ≡ S.
Let cx ∈ Condx be a query, then M

∗→ M ′ s.t. M ′ |= cx if and only if S
∗→ S′

s.t. S′ |= tr(cx).

Proof. In step 9 of Algorithm 2 state S0 = (M ′0, V0) and marking M ′0 are given
the same number of tokens in each place, since M0 and V0(x) = 0 for all x ∈ X.
By definition, the ages of tokens in a marked DTAPN are initially 0, meaning
that S0 ≡M0.

”⇒”: Since S0 ≡ M0 we can conclude that M
∗→ M ′ if and only if S

∗
; S′

where M ′ ≡ S′ by repeated application of Lemma 1. Following Lemma 2 we
prove that if M

∗→M ′ where M ′ |= cx, then S
∗→ S′ where S0 |= tr(cx). This is

possible because S
∗
; S′ implies S

∗→ S′.
”⇐”: To prove that if S

∗→ S′, where S′ |= tr(cx) then M
∗→ M ′ where

M ′ |= cx holds, we must consider the fact that S′ must be stable in order to

satisfy tr(cx), thus we might as well write S
∗
; S′ for which we know it holds. ut

6 Verification of PNDVs

Now that we have demonstrated the modelling capabilities of PNDVs, we move
onto the verification of this model. In this section we present algorithms for
reachability analysis of bounded PNDVs. We describe a heuristic used to improve
the efficiency of state space search, as well as an over-approximation technique
that is useful for disproving reachability. Lastly, we present experimental results
for these algorithms.

Algorithm 3 shows a general (naive) graph searching algorithm for performing
reachability analysis. It can be implemented as a depth first search (DFS) or
breadth first search (BFS), depending on the order in which states are taken
from the queue in line 5. The algorithm guaranteed to terminate on bounded
PNDVs. We can easily improve this algorithm by transforming it into a best
first search algorithm (BestFS), by prioritizing the most promising states, using
a heuristic cost estimate, described in Section 6.1.
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Algorithm 3 General Reachability Search algorithm for satisfying a query

1: function Reachability-Search(N,S0, q)
2: (P, T,X,Range, F,Pre,Post) = N
3: Q = Z = {S0}
4: while Q 6= ∅ do
5: Choose S from Q . Choose a state from Q
6: if eval(q,M, V ) = true, where S = (M,V ) then
7: return “Query q is satisfiable”
8: end if
9: for S′, such that S

t→ S′, where t ∈ T do . For each successor state
10: if S′ 6∈ Z then
11: Z = Z ∪ {S′}
12: Q = Q ∪ {S′} . Insert S′ into the queue
13: end if
14: end for
15: Q = Q \ {S}
16: end while
17: return “Query q is not satifisable”
18: end function

6.1 Best First Reachability Search

In this section we present a modification of Algorithm 3 that attempts to reach a
marking satisfying the query using as few iterations as possible. Thus, if a query
is satisfiable, this approach may explore a smaller subset of the state space than
the naive approach in Algorithm 3.

The idea is to do best first search with a heuristic to choose a state S from the
queue Q that is likely to be close to a state satisfying the query. In order to do
this, we need a heuristic distance function to estimate the distance a state is from
satisfying a query. The heuristic takes both logical conditions and comparisons
into consideration when calculating the estimate.

To estimate the distance when comparing two integers, given an operator
they need to satisfy, we introduce the auxillary function ∆ : N× {=, <,≤, >,≥
, 6=} × N→ N, as defined in Table 1.

∆(v1,=, v2) = |v1 − v2|

∆(v1, 6=, v2) =

{
1, if v1 = v2

0, otherwise

∆(v1, <, v2) = max (v1 − v2 + 1, 0) ∆(v1, >, v2) = ∆(v2, <, v1)
∆(v1,≤, v2) = max (v1 − v2, 0) ∆(v1,≥, v2) = ∆(v2,≤, v1)

Table 1: Formal ∆ Specification

The function ∆ is designed to yield a lower value if the numbers are close
to satisfy the operator. For example, ∆(3, <, 2) = 2 > ∆(3, <, 3) = 1, because
∆(3, <, 3) is closer to being satisfied than ∆(3, <, 2).

To estimate the distance between a state and a query the function dist :
S ×Cond→ N is introduced in Table 2. It makes use of the previously defined
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function ∆ to calculate the distance estimate of the comparison operators. Given
a state S and a query q, dist yields an integer estimate of the distance from state
S to a state S′ satisfying the query q.

Note that we avoid handling the negation construction ¬, in the distance
function (Table 2), by rewriting queries to a form without the use of negation
using boolean rules, i.e. inverting operators and swapping conjuctions and dis-
junctions. When computing the distance for conjunctions we take the sum of the
distance between two operands. Consequently, increasing the distance if there
are many conjunctions with unsatisfied operands. For disjunctions the heuristic
returns the distance to the most optimistic operand, i.e the operand with the
lowest distance.

dist(s, e1 ./ e2) = ∆(eval(e1,M, V ), ./, eval(e2,M, V ))
, where s = (M,V ) and ./∈ {=, <,≤, >,≥, 6=}

dist(s, c1 ∧ c2) = dist(s, c1) + dist(s, c2)
dist(s, c1 ∨ c2) = min(dist(s, c1), dist(s, c2))

Table 2: Formal dist Specification

We create a best first search algorithm by replacing line 5 in Algorithm 3
with S = arg minS∈Q dist(S, q). This heuristic operates under the assumption
that similar states are likely to be a few firings away from each other. As we
will see in Section 6.3, this assumption works for most of the queries used in the
experiments. Nevertheless, it is possible to create a scenario where the heuristic
estimate degrades.

This heuristic operates under the assumption that similar states are only a
few firings away from each other. As Section 6.3 will show, this is true for many
interesting queries, however it will likely be possible to create a PN where this
infact leads to a longer search.

6.2 Over-Approximation Using Integer Programming

The techniques presented so far rely on searching through the state space. Now
we will present a technique based on integer programming proposed by Esparza
and Melzer in [7], which can be used to efficiently disprove reachability in some
cases, by over-approximating the state space, hence avoiding state space explo-
sion. The intuition behind this technique is that reachability can be ruled out if
there does not exist any combination of transitions such that a target marking is
reachable. This technique provides an over-approximation for ordinary PNs, but
by discarding variables, pre- and post-conditions it can still be used for PNDVs.

Given a PN N = (P, T, F ) and markings M0,M
′ ∈ M(N), if there is a

sequence of transitions M0 → · · · → M ′, such that M ′ is reachable from M0,
then there is a firing vector θ : T → N, such that, the state equation,

M0(p) +
∑
t∈T

(F (t, p)− F (p, t)) · θ(t) = M ′(p)

holds for all p ∈ P [3]. Clearly, a solution to θ(t) is the number of times t was
fired in a sequence of transitions from M0 to M ′. Notice that a solution to the

16



state equation does not imply that M ′ is reachable, but if M ′ is reachable it
implies the existence of a solution. Conversely, if there is no solution to the state
equation, M ′ is not reachable from M0. The state equation can be expressed
as a matrix equation and solved using linear algebra, yet this does not ensure
a positive integer solution. Esparza and Melzer proposed the usage of integer
programming to solve the state equation in [7], ensuring θ(t) ∈ N for all t ∈ T ,
thus providing a more accurate approximation.

10

p1 t1 p2

Fig. 7: A simple PN

To determine whether it is possible or not for the marked PN in Figure 7 to
satisfy the query c = (5 ≤ p1 ∧ p1 ≤ 7) ∧ (6 ≤ p2 ∨ p2 ≤ 2), we can derive two
systems of inequations

s1 =


10− 1 · θ(t1) ≤ 7,
10− 1 · θ(t1) ≥ 5,
0 + 1 · θ(t1) ≤ 2,
0 + 1 · θ(t1) ≥ 0

 , s2 =


10− 1 · θ(t1) ≤ 7,
10− 1 · θ(t1) ≥ 5,
0 + 1 · θ(t1) ≤ ∞,
0 + 1 · θ(t1) ≥ 6


If s1 and s2 are given as input to an integer programming solver, such as lp solve
[1], it will tell us that no integer solution exists for neither s1 nor s2. From this
we can conclude that a marking satisfying c is not reachable in Figure 7. If
an integer solution to either s1 or s2 was found, an incremental trap-testing
refinement of the state equation proposed in [7] can easily be applied, once a
solution is found. Implementation and preliminary experimentation with this
technique in PeTe gave promising results. For a complete presentation of how to
derive these systems of inequations from a query see Appendix B.

6.3 Evaluation

To evaluate the algorithms presented earlier in this section, we have implemented
PeTe, a Petri net modelling and verification tool for PNDVs. PeTe is written in
Qt/C++, and comes with a GUI and many variations of the algorithms presented
earlier. A screenshot of PeTe can be found in Figure 8 in Appendix C, sources
and binaries can be obtained from [2].

The models used to evaluate the efficiency of the algorithms are ordinary
bounded Petri nets from the SUMo model checking contest [4], to which PeTe
was also submitted. The submission kit for this contest provided three models:
FMS, Kanban and MAPK as well as ten satisfiable and ten non-satisfiable queries
for each model. Note that these models are designed to be scalable in the number
of tokens, such that when scaling certain places, verification becomes increasingly
more computationally demanding.

The efficiency of best first search (BestFS), described in Section 6.1, was eval-
uated by comparing it with two naive approaches, breadth first search (BFS) and
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random depth first search (RDFS). Due to the irregularity of RDFS, all results
for this algorithm are the average of ten runs. All experiments were performed on
an Intel Core 2 Duo, running Ubuntu 10.10, where memory usage was restricted
to a maximum of 1GiB and the tool would terminate upon exceeding this limit.

Table 3 shows the average running times of the three search strategies. Each
value is the average completion time of ten different queries on each of the three
models. The suffix of each model name denotes the scaling factor1. Considering
the table, it is clear that the naive search strategies were unable to verify queries
for models with a higher scaling factor than the lowest one within the given
memory constraints.

Strategy
RDFS BFS BestFS

FMS 4 1.4379 1.516 0.002
FMS 10 Out of memory Out of memory 0.074
FMS 20 Out of memory Out of memory 0.111
FMS 50 Out of memory Out of memory 0.646

Kanban 5 5.865 5.301 0.002
Kanban 10 Out of memory Out of memory 0.057
Kanban 20 Out of memory Out of memory 0.066
Kanban 50 Out of memory Out of memory 0.155

MAPK 8 20.2094 27.119 0.004
MAPK 40 Out of memory Out of memory 0.086
MAPK 80 Out of memory Out of memory 0.182
MAPK 160 Out of memory Out of memory 0.142

Table 3: PeTe running times on three different models with four different scaling factors
using the given search strategies. Time was not measured when PeTe ran out of memory.
All measurements are in seconds

From Table 3 it is clear that the BestFS is significantly faster than both BFS
and RDFS. Moreover, the results show no considerable slowdown for BestFS as
the scaling factor grows. We can conclude that BestFS is capable of handling
larger models than the two naive approaches. For results for larger scaling factors
see Appendix F. To further explore the limits of BestFS additional experiments

FMS Kanban MAPK
Scale # Scale # Scale #
50 0 100 1 320 0
100 71 200 4 640 7
200 0 500 6 1280 0
500 89 1000 11 2560 572

Table 4: Number of searches out of 1000 PeTe was unable to satisfy within the memory
constraint

were performed by randomly generating 1000 satisfiable queries for each instance
of the models. Table 4 presents the number of queries PeTe was unable to verify
before terminating due to the memory constraint. Notice that not all scaling

1 See Appendix D for details on how models are scaled.
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factors make it more difficult to verify queries. We believe this is attributed
to the structure and counting places in the models. Besides this anomaly, the
number of unverifiable queries grows with the scaling factor. From Table 4 it can
be concluded that it is possible to find queries that BestFS cannot verify, even
for rather small instances of Kanban.

Finally, the SUMo model checking contest submission kit [4] also provided
non-satisfiable queries. While BestFS provided no improvement over naive search
for these queries, the over-approximation presented in Section 6.2 was able to
disprove all of them, for any scaling of each model in less than one second.

7 Conclusion

We have proposed a new extension of Petri nets that permits more modelling
convenience over classical Petri nets. This model is Turing complete and we
have given a decidable subset with the same expressive power as Petri nets. We
have demonstrated the modelling power of Petri nets with discrete variables and
their applications by simulating bounded discrete timed-arc Petri nets, allowing
one to decide reachability. Finally, we have developed heuristic algorithms for
reachability analysis of Petri nets with discrete variables. We have confirmed
their advantages over naive and randomized search through experimental re-
sults, showing that larger models may become tractable when heuristics are
applied. Future development could include integrating over-approximation with
best first search, hence enabling exclusion of unpromising branches. Alterna-
tively, a framework for determining when over-approximation is exact could be
developed.

References

1. lp solve - linear and integer programming solver,
http://lpsolve.sourceforge.net/5.5/

2. PeTe - modelling and verification tool for petri nets,
https://github.com/jopsen/PeTe

3. Petri Nets: Properties, Analysis and Applications, vol. 77 (April 1989)
4. Sumo model checking contest (june 2011),

http://sumo.lip6.fr/Model_Checking_Contest.html

5. Boucheneb, H., Gardey, G., Roux, O.H.: Tctl model checking of time petri nets.
Journal of Logic and Computation 19(6), 1509–1540 (2009)

6. Byg, J., Jørgensen, K., Srba, J.: An efficient translation of timed-arc petri nets to
networks of timed automata. In: Formal Methods and Software Engineering,
LNCS, vol. 5885, pp. 698–716. Springer Berlin / Heidelberg (2009)

7. Esparza, J., Melzer, S.: Verification of safety properties using integer
programming: Beyond the state equation. Formal Methods in System Design 16,
159–189 (2000)

8. David de Frutos Escrig, Valent́ın Valero Ruiz, O.M.A.: Decidability of properties
of timed-arc petri nets. In: Proc. of the 21st international conference on
Application and theory of petri nets. pp. 187–206. ICATPN’00, Springer-Verlag,
Berlin, Heidelberg (2000)

19

http://lpsolve.sourceforge.net/5.5/
https://github.com/jopsen/PeTe
http://sumo.lip6.fr/Model_Checking_Contest.html


9. Hanisch, H.M.: Analysis of place/transition nets with timed arcs and its
application to batch process control. In: Ajmone Marsan, M. (ed.) Application
and Theory of Petri Nets 1993, LNCS, vol. 691, pp. 282–299. Springer Berlin /
Heidelberg (1993)

10. Jacobsen, L., Jacobsen, M., Møller, M., Srba, J.: A framework for relating timed
transition systems and preserving tctl model checking. In: Computer Performance
Engineering, LNCS, vol. 6342, pp. 83–98. Springer Berlin / Heidelberg (2010)

11. Jensen, K., Kristensen, L., Wells, L.: Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on
Software Tools for Technology Transfer (STTT) 9, 213–254 (2007)

12. Kosaraju, S.R.: Decidability of reachability in vector addition systems
(preliminary version). In: Proc. of the 14th annual ACM symposium on Theory
of computing. pp. 267–281. STOC ’82, ACM, New York, NY, USA (1982)

13. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to
coloured petri nets. International Journal on Software Tools for Technology
Transfer (STTT) 2, 98–132 (1998)

14. Mayr, E.W.: An algorithm for the general petri net reachability problem. In:
Proc. of the 13th annual ACM symposium on Theory of computing. pp. 238–246.
STOC ’81, ACM, New York, NY, USA (1981)

15. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA (1981)

16. Petri, C.: Kommunikation mit automaten. Tech. rep. (1966)
17. Ratzer, A., Wells, L., Lassen, H., Laursen, M., Qvortrup, J., Stissing, M.,

Westergaard, M., Christensen, S., Jensen, K.: Cpn tools for editing, simulating,
and analysing coloured petri nets. In: van der Aalst, W., Best, E. (eds.)
Applications and Theory of Petri Nets 2003, LNCS, vol. 2679, pp. 450–462.
Springer Berlin / Heidelberg (2003)

18. Valentin Valero Ruiz, Fernando Cuartero Gomez, D.d.F.E.: On non-decidability
of reachability for timed-arc petri nets. Eighth International Workshop on Petri
Nets and Performance Models (PNPM ’99) p. 188 (1999)

20



A Proof of Theorem 2

Theorem 2. The labeled transition system (LTS) of a marked p-free PNDV
(N1, S1) is isomorphic to the LTS of its translated marked PN (N2,M2), where
N2 = p-free-PNDV-to-PN(N1) and any M2 s.t. S1 ≡M2.

Proof. We prove isomorphism by showing that (i) the correspondence relation

is a bijection, (ii) S′1
t→ S′′1 implies M ′2 →M ′′2 , where S′′1 ≡M ′′2 , and (iii) M ′2

t′→
M ′′2 implies S′1 → S′′1 , where S′′1 ≡M ′′2 .

Considering the correspondence relation in Definition 4 it is obvious that
any state S′1 on N1 has exactly one corresponding marking M ′2 on N2. Since the
complement place is accounted for in the correspondence relation, any marking
M ′2 on N2 for which a corresponding state S′1 on N1 exists, S′1 is unique. Thus,
the correspondence relation is a bijection between all states on N1 and any
marking on N2 that has a corresponding state on N1. Hence, we have shown (i).

We show (ii), by considering the transition t for which S′1 = (M ′1, V )
t→ S′′1 .

By enabledness we know that valuation V satisfies Pre(t). This valuation V must
have been considered during the translation to PN, thus a transition tV must

exist in T2, s.t. M ′2
tV→M ′′2 , where S′′1 ≡M ′′2 .

(iii) follows from the consideration that in M ′2
t′→ M ′′2 the transition t′ must

be of the form t′ = tV , for some valuation V , s.t. S′1 = (M ′1, V ), otherwise M ′2
and S′1 would not correspond. From the translation we know that t ∈ T1, where

V |= Pre(t), must exist s.t. S′1
t→ S′′1 and S′′1 ≡ M ′′1 . Thus, we have shown (i),

(ii) and (iii), proving isomorphism. ut

B Over-Approximation Using Integer Programming

In this section elaborate on the derivation of inequations from a reachability
query. First we define a reduced condition language Condr for expressing reach-
ability queries,

Condr ::= p ./ z | cr ∨ cr | cr ∧ cr

, where ./∈ {=, <,≤, >,≥, 6=}, z ∈ Z and p ∈ P . For simplicity negation is not
included, however it can be easily achieved by rewrite the formula using the rules
for boolean logic.

A marking constraint y ∈ CON = P → {[a, b] | a ∈ N, b ∈ N ∪ {∞}} is
a mapping from places to intervals. For convenience we let y = {p 7→ [z1; z2]},
where p ∈ P and z1, z2 ∈ Z, denote a constraint y ∈ CON , such that y(p) =
[z1, z2] and y(p′) = [0,∞] for all p′ ∈ P \{p}. In the end each marking constraint
will be translated into a system of inequations. To deduce a set of marking
constraints from a query, we introduce an auxiliary function cons : Condr →
2CON , as defined in Table 5.

The function cons is defined such that a marking M satifies a query cr,
if and only if there exists a constraint y ∈ cons(cr) where M(p) ∈ y(p) for
all p ∈ P . This property enables us to exploit the expressive power of integer
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cons(c1 ∧ c2) = {combine(y1, y2) | y1 ∈ cons(c1), y2 ∈ cons(c2)}
where combine(y1, y2)(p) = y1(p) ∩ y2(p), for all p ∈ P

cons(c1 ∨ c2) = cons(c1) ∪ cons(c2)
cons(p = z) = {{p 7→ [k; z]}} cons(p 6= z) = {{p 7→ [0; z − 1]}, {p 7→ [z + 1;∞]}}
cons(p ≤ z) = {{p 7→ [0; z]}} cons(p ≥ z) = {{p 7→ [z;∞]}}
cons(p < z) = {{p 7→ [0; z − 1]}} cons(p > z) = {{p 7→ [z + 1;∞]}}

Table 5: Auxiliary function for extracting constraints

programming to create a system of inequations for each y ∈ cons(cr) and if none
of these systems have a positive integer solution, we can conclude that a marking
satifying cr is not reachable.

Algorithm 4 Over-approximation Using Integer Programming

1: function Can-Disprove-Reachability(q,M0, N)
2: (P, T, F ) = N
3: for all y ∈ cons(q) do
4: sys = ∅ . Let sys be an empty system of inequations
5: for all p ∈ P do
6: [min,max] = y(p)
7: sys = sys ∪M0(p) +

∑
t∈T (F (t, p)− F (p, t)) · θ(t) ≥ min

8: sys = sys ∪M0(p) +
∑

t∈T (F (t, p)− F (p, t)) · θ(t) ≤ max
9: end for

10: if there is an integer solution to θ satisfying constraints in sys then
11: return ”Conclude marking satisfying q might be reachable”
12: end if
13: end for
14: return ”Conclude marking satisfying q is not reachable”
15: end function

Algorithm 4 shows how the marking constraints derived with cons can be
used to construct the systems of inequations that is sufficient to prove a query
not reachable.
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C PeTe

Fig. 8: A screenshot of PeTe, demonstating the model editor, and the side bars for
queries and variables

D Models Used for Experiments
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E Running Times for FMS and MAPK
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Fig. 12: Running Times for three queries on FMS. Each line represents the running
time for a selected query. These queries were provided by the SUMo Model Checking
Contest submission kit [4]. All measurements are in seconds
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Fig. 13: Running times for three queries on Kanban. Each line represents the running
time for a selected query. These queries were provided by the SUMo Model Checking
Contest submission kit [4]. All measurements are in seconds
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Fig. 14: Running times for three queries on MAPK. Each line represents the running
time for a selected query. These queries were provided by the SUMo Model Checking
Contest submission kit [4]. All measurements are in seconds
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