
Local Model Checking of Weighted CTL

Jonas Finnemann Jensen,
Lars Kærlund Østergaard

Department of Computer Science, Aalborg University, Denmark

Abstract. Local or ”on-the-fly” model checking techniques have be-
come attractive over the years, due to the way they explore the state-
space incrementally, potentially reducing space and time requirements for
analysis and verification. We demonstrate how Liu and Smolkas depen-
dency graph framework and local algorithm for evaluating alternating-
free fixed points can be used to decide satisfaction of weighted CTL
formulae over weighted Kripke structures. This is achieved by encod-
ing the problem as a dependency graph that is pseudo-polynomial in the
size of the bound of the formula. We propose an extension of dependency
graphs called symbolic dependency graphs and a local algorithm for this
framework. We show that the symbolic encoding is polynomial in the
size of the formula and model. Lastly, we demonstrate the advantages of
our approach through experiments.

1 Introduction

CTL model checking is the process of determining whether a given finite struc-
ture is a model of a given formula expressed in branching time temporal logic
(CTL). Like many other model checking problems, CTL model checking suffers
from the well-known problem of state space explosion, because the state space
of the model of interest may grow exponentially in the number of concurrently
executing components. Since the state-space problem has been a major concern
for model checking, several techniques have been proposed to combat this issue.
For instance, Burch, Clarke and McMillan suggest symbolic model checking, us-
ing BDDs allowing many practical systems of enormous size to become verifiable
using the mu-calculus [3]. Another approach is to attempt to limit the size of
the state space by only exploring what is required to determine the satisfaction
of some property.

Often in model checking we are only interested in the satisfiability of a prop-
erty for a particular state, rather than for every state of the system. So, instead
of executing a so-called global algorithm that computes the value for every state
by generating the entire state space, it is possible to limit the scope to a single
state and generate the state-space incrementally in a need-driven fashion. The
latter approach is what we refer to as a local algorithm. This technique also
applies to the state-space explosion problem, i.e. it may simply be intractable
to determine the satisfaction of some property for the entire system, hence we
may be forced to use a local strategy and restrict our attention to a particular

state, and hopefully the subset of the state-space generated is small enough for
verification to succeed.

Many verification problems such as liveness, safety, and fairness properties
can be expressed using fixed points. This is of particular interest with respect to
the modal mu-calculus that enables the formulation of various properties of sys-
tems, using smallest and greatest fixed points. Hence, the satisfaction of formulae
expressed using the modal mu-calculus can be determined by evaluating fixed
these points. The full modal mu-calculus is general enough to express properties
formulated in either CTL or Linear Temporal Logic (LTL). Practical solutions
for the mu-calculus are often also applicable to these other logics. So, some of
the same fixed point evaluation techniques to implement algorithms for verifying
these logics. One such technique for evaluating fixed points was proposed by Liu
and Smolka proposed a technique in [7]. They describe an abstract framework
called dependency graphs that encodes boolean equation systems and present
a global and local algorithm for computing alternating-free fixed points of de-
pendency graphs in linear time. In turn this technique can be used for model
checking the alternation-free modal mu-calculus.

We define weighted CTL (WCTL); an extension of CTL, where formulae are
parametrized with constants that define an upper-bound on the cost for which a
particular formula must be satisfied. The motivation for this extension is the need
for being able to express quantities, such as costs or distances when verifying
models with transitions carrying weights. We formulate such weighted models
using weighted Kripke structures, which simply extend usual Kripke structures
with a weighted transition relation.

We demonstrate how WCTL model checking of weighted Kripke structures
can be performed by encoding the problem using Liu and Smolka’s depen-
dency graph framework. As it turns out, we demonstrate that for our particular
weighted formalism, the size of the dependency graphs is pseudo-polynomial in
the weight parameter of a WCTL formula. We achieve a reduction in the size
of the input dependency graphs by extending them using symbolic dependency
graphs. The main advantage of this new formalism is that size of the graph is
only polynomial in the size of the input. Finally, we describe a local algorithm
for evaluating minimal fixed points on symbolic dependency graphs in pseudo
code and provide experimental results comparing the two approaches described
in this paper using both a local and global algorithm.

Related Work

Fahrenberg et. al. define a quantitative weighted CTL (WCTL) for reasoning
about quantitative aspects regarding weighted Kripke structures in [5], where
truth values of formulae are in the domain R≥0 ∪ {∞}. In contrast, the satis-
faction of formulae is still interpreted in the boolean domain in the variant of
WCTL described in this paper. Buchholz and Kemper propose a valued com-
putation tree logic (CTL$) interpreted over a general set of weighted automata
that includes CTL in the logic as a the special case over the boolean semiring in
[2]. For model checking CTL$ formulae they describe a matrix-based algorithm.

2

Their logic is more expressive than the one proposed here, since they support
negation and all the comparison operators. In addition, they permit nested CTL
formulae and can operate on max/plus semirings in O(min(log(t) ·mm, t · nz))
time, where t is the number of vector matrix products, mm is the complexity of
multiplying two matrices of order n and nz is the number of non-zero elements in
special matrix used for checking ”until” formulae up to some bound t. However,
they do not provide an on-the-fly technique for verification.

Several approaches to on-the-fly/local algorithms for model checking the
modal mu-calculus have been proposed. H. Andersen describes a local algorithm
for model checking the modal mu-calculus for alternation depth one running in
O(n ·log(n)) (where n is the product of the size of the assertion and labeled tran-
sition system) in [1]. Liu and Smolka improve on the complexity of this approach
with a local algorithm for evaluating alternating-free fixed points that runs in
O(n), where n is the size of the input graph [7]. This is the algorithm we apply for
WCTL model checking and the one we extend for symbolic dependency graphs.
Cassez et. al. present a symbolic extension for the algorithm of Liu and Smolka; a
zone-based forward, local algorithm for solving timed reachability games [4]. Liu,
Ramakrishnan and Smolka also introduce a local algorithm in [6] for the evalua-
tion of alternating fixed points with the complexity O(n+(n+adad)ad), where ad is
the alternation depth of the graph. However, we do not consider the evaluation
of alternating fixed points in this paper.

Outline

Weighted Kripke structures and weighted CTL are presented in Section 2. Sec-
tion 3 introduces dependency graphs and model checking with this framework is
covered in Section 4. In Section 5 we propose symbolic dependency graphs and
discuss how they are used for model checking in Section 6. Experimental results
are presented in Section 7 Lastly, Section 8 concludes.

2 Weighted Kripke Structures

In this section we introduce weighted Kripke structures (WKS) and weighted
computation tree logic (WCTL). We denote the set of natural numbers, including
zero, by N = {0, 1, 2, . . .}.

Definition 1 (Weighted Kripke Structure). A Weighted Kripke Structure
(WKS) is a quadruple K = (S,AP, L,→), where

– S is a finite set of states,
– AP is a finite set of atomic propositions,
– L : S → P(AP) is a mapping from states to sets of atomic propositions, and
– →⊆ S × N× S is a transition relation.

3

s t

r

2

5

35

{closed}{open}

Fig. 1: A WKS that models a mechanical window that can open or close. It consumes
5 units of power when it goes to the open state and 2 power units to enter the closed
state.

Example 1 Figure 1 shows a WKS K = (S,AP, L,→), where

S = {s, t, r}
AP = {open, closed, bad}
L = {s 7→ {open}, t 7→ {closed}, r 7→ {bad}}
→ = {(s, 2, t), (t, 5, s), (r, 35, t)}

The WKS models a window opener with the three states s, t and r. The
model has atomic propositions open, closed and bad indicating the state of
the window controlled by the window opener. The weights on the transition
indicates the amount of power required to perform the transition. Notice
that it requires less power to close the window, than it requires to open it.

If (s, w, s′) ∈→ we say that s evolves to s′ with weight w, denoted s
w→ s′.

A WKS is said to be non-blocking if for any s ∈ S, there exists an s′, such
that s

w→ s′ . For simplicity we shall assume that all WKSs are non-blocking. By
introducing a dead state with no atomic propositions with a zero-weight self-loop
and adding a zero-weight transition from every terminal state to the dead state,
any WKS can be rendered non-blocking.

Definition 2 (Run). Given a WKS K = (S,AP, L,→), a run is an infinite
path σ in K.

σ = s0
w0→ s1

w1→ s2
w2→ s3 . . .

A position p ∈ N is the index of state s along σ and its weight is Wσ(p) =
Σp−1
i=0 wi. We write σ(p) to denote that state s is at position p in σ, i.e. σ(i) = si.

Definition 3 (Weighted Computation Tree Logic). The set of weighted
computation tree logic (WCTL) formulae over a WKS K = (S,AP, L,→) is
given by the following grammar.

ϕ ::= true | false | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
E ϕ1 U≤k ϕ2 | A ϕ1 U≤k ϕ2 | EX≤k ϕ | AX≤k ϕ

where k ∈ N and a ∈ AP.

4

Note that the negation-free CTL fragment expressing safety properties is
subsumed by WCTL, because we may also express regular CTL properties for
unweighted models using this logic. For instance, the CTL formula EXϕ has the
form EX≤0 ϕ in WCTL.

2.1 Semantics

We write s |= ϕ, if state s in K satisfies WCTL formula ϕ. The satisfaction
relation is defined inductively as follows.

s |= true

s |= a iff a ∈ L(s)

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= E ϕ1 U≤k ϕ2 iff there exists a run σ starting from s and a position p ≥ 0 s.t.

σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= A ϕ1 U≤k ϕ2 iff for any run σ starting from s, there exists a position p ≥ 0 s.t.

σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= EX≤k ϕ iff ∃s′ s.t. s
w→ s′, s′ |= ϕ and w ≤ k

s |= AX≤k ϕ iff ∀s′ s.t. s
w→ s′ where w ≤ k it holds that s′ |= ϕ

3 Dependency Graphs

In this section we present the dependency graph framework and a local algorithm
for minimal fixed point evaluation, both of which were originally introduced by
Liu and Smolka in [7]. This framework can be applied to model checking of the
alternation-free modal mu-calculus, hence it may also be used for model checking
CTL. In section 4 we demonstrate how to model check a WKS with WCTL using
this framework.

Definition 4 (Dependency Graph). A dependency graph G = (V,E) is a
pair, where

– V is a finite set of configurations, and
– E ⊆ V × P(V) is a set of hyper-edges.

Let G = (V,E) be a dependency graph. For a hyper-edge e = (v, T), we
call v the source configuration and T the target set of e. The set of successors
succ(v) = {(v, T) ∈ E} of a configuration v is the set of hyper-edges with v as
the source configuration. The size of a dependency graph G = (V,E) is denoted
|G| and formally defined as follows.

|G| = |V |+
∑

(v,T)∈E

(|T |+ 1)

5

An assignment A : V → {0, 1} is a function that assigns values to configura-
tions of G. A post fixed-point assignment F of G is an assignment such that for
every configuration v ∈ V , if (v, T) ∈ E and for all u ∈ T it holds that F (u) = 1,
then F (v) = 1.

By taking the standard partial order v between assignments, such that A v
A′ if and only if A(v) ≤ A′(v) for all v ∈ V (using the usual order 0 < 1),
then by the Knaster-Tarski fixed-point theorem, there exists a unique minimum
post-fixed point assignment, denoted Fmin .

The minimum post fixed-point assignment Fmin of G can be computed by
repeated application of the following functor, starting from F0(v) = 0 for all
v ∈ V .

F i+1(v) =
∨

(v,T)∈E

(∧
u∈T
F i(u)

)

This is a monotonic function evaluated on a finite complete lattice, hence by the
Knaster-Tarski fixed-point theorem we reach a fixed point after a finite number
of iterations. Thus, there exists an m ∈ N, such that Fm(v) = Fm+1(v) for
all v ∈ V , in which case we have Fm = Fmin is the minimum post-fixed point
assignment of G.

x = y ∧ z
z = y ∨ (x ∧ q)
y = true

x

y z

q

∅

(a) A boolean equation system and its de-
pendency graph encoding.

i F i(x) F i(y) F i(z) F i(q)

0 0 0 0 0
1 0 1 0 0
2 0 1 1 0
3 1 1 1 0

(b) Computation of the minimum
post fixed-point on the dependency
graph shown to the left using the
functor.

Fig. 2: A boolean equation system with its dependency graph encoding. The table to
the right lists the iterations of the functor for computing the minimum fixed point.

Example 2 Figure 2a shows a boolean equation system and the equivalent
dependency graph. Configurations are illustrated as labeled squares and
hyper-edges are drawn as lines, where every configuration in their respective
target sets is pointed to by an arrow.

Every variable of the boolean equation system is encoded as a configura-
tion, where every outgoing hyper-edge represents a disjunction of conjunc-
tions over the variables in its target set. For the variable y which is trivially
true, a hyper-edge with an empty target set is added.

The minimum post fixed-point assignment of the dependency graph in
Figure 2a is Fmin(x) = 1, Fmin(y) = 1, Fmin(z) = 1 and Fmin(q) = 0.

6

Computing the minimum post-fixed assignment by repeated application of
F takes O(|G|2) time. Liu and Smolka propose global and local algorithms, run-
ning in O(|G|) time, for computing the minimum post-fixed point assignment
of dependency graphs in [7]. For model checking applications we are often only
interested in the minimum post-fixed point assignment Fmin(v) of a specific con-
figuration v ∈ V . For this purpose, Liu and Smolka proposed a local algorithm,
which is reproduced in Algorithm 1 with minor modifications. Note that the
complexity of the local algorithm is still O(|G|) (like the global algorithm), be-
cause in the worst case it may have to explore the entire graph to compute the
fixed point.

Algorithm 1 maintains three data-structures throughout execution; the as-
signment A, the dependency set D for every configuration and a queue of hyper-
edges W . The dependency set D(v) for some configuration v maintains a list of
hyper-edges that were processed under the assumption the A(v) = 0. If at some
point the value of A(v) changes to 1, these hyper-edges must be re-processed,
since we may be able to force their respective source configurations to be assigned
1.

We have made some slight modifications to the algorithm. In particular, in
line 15, we add the current hyper-edge e to the dependency set D(u) of the
successor configuration u, i.e. D(u) = {e}. The original pseudo code does not
perform this step, rather the dependency set is assigned the empty set [7], in
which case line 15 would read D(u) = ∅. We believe this is simply a typographical
error on the authors’ part. Without this modification the algorithm would not
propagate correctly.

Algorithm 1: Liu-Smolka Local Algorithm

Input: Dependency graph G = (V,E) and initial configuration v0 ∈ V
Output: Minimum post fixed-point assignment of v0, Fmin(v0)

1 let A(v) = ⊥ for all v ∈ V
2 A(v0) = 0
3 D(v0) = ∅
4 W = succ(v0)
5 while W 6= ∅ do
6 let e = (v, T) ∈W
7 W = W \ {e}
8 if ∀u ∈ T it holds that A(u) = 1 then
9 A(v) = 1

10 W = W ∪D(v)

11 else if ∃u ∈ T where A(u) = 0 then
12 D(u) = D(u) ∪ {e}
13 else if ∃u ∈ T where A(u) = ⊥ then
14 A(u) = 0
15 D(u) = {e}
16 W = W ∪ succ(u)

17 return A(v0)

7

Theorem 1 (Local Algorithm Correctness). Given a dependency graph
G = (V,E) and an initial configuration v0 ∈ V , Algorithm 1 computes the
minimum post-fixed point assignment of v0.

Proof. Correctness of Algorithm 1 is proved in [7].

Theorem 2 (Local Algorithm Complexity). Given an input dependency
graph G = (V,E) and initial configuration v0 ∈ V , Algorithm 1 runs in O(|G|)
time.

Proof. The complexity for Algorithm 1 is proved in [7].

4 Model Checking with Dependency Graphs

In this section we present an encoding of a WKS and a WCTL formula as a
dependency graph. We then show how minimum post fixed-point computation
of a dependency graph can be used to answer model checking questions.

Definition 5 (Formula Satisfaction Encoding). Given WKS K, state s and
a WCTL formula ϕ, we can encode the model checking problem as a dependency
graph. Every configuration in the graph consists of a state and a formula. The
dependency graph is expanded from the initial configuration 〈s, ϕ〉 using the rules
illustrated in Figures 3a, 3b, 4a, 4b, 5, 6, 7 and 8.

〈s, true〉

∅

(a) A true configuration.

〈s, a〉

∅

if a ∈ L(s)

(b) A configuration with an atomic
proposition that holds.

Fig. 3: Configurations that are true have a hyper-edge with an empty target set.

〈s, ϕ1 ∧ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(a) A conjunctive configuration.

〈s, ϕ1 ∨ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(b) A disjunctive configuration.

Fig. 4: Successors of configurations with a composite logical operator.

8

〈s,E ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤k−w1 ϕ2〉 〈sn,E ϕ1 U≤k−wn ϕ2〉· · ·

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si and wi ≤ k}

Fig. 5: Successors of a existential until configuration.

〈s,A ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤k−w1 ϕ2〉 〈sn,A ϕ1 U≤k−wn ϕ2〉· · ·

if wi ≤ k for all wi s.t s
wi→ si

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

Fig. 6: Successors of a universal until configuration. Notice that the set of successors of
s is never empty, as we are only considering non-blocking WKSs.

〈s,EX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, s2, . . . , sn} = {si | s
wi→ si and wi ≤ k}

Fig. 7: Successors of an existential next configuration.

〈s,AX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, . . . , sn} = {si | s
wi→ si, wi ≤ k}

Fig. 8: Successors of a universal next configuration.

9

Theorem 3 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, ϕ a WCTL formula and G a dependency graph expanded from
〈s, ϕ〉 following Definition 5. We have that s |= ϕ if and only if Fmin(〈s, ϕ〉) = 1.

Proof. We prove Theorem 3 by structural induction on ϕ.

(I) For ϕ = true we show that for all s ∈ S we have Fmin(〈s, true〉) = 1 if
and only if s |= true. But as s |= true always holds, it is sufficient to
show that Fmin(〈s, true〉) = 1 for any post fixed-point assignment F of
G. In Figure 3a we add a hyper-edge from the configuration 〈s, true〉, to
the empty target set. Thus, we have that F (v) = 1 for any post fixed-
point assignment F of G, because all vertices in the empty set satisfy any
property trivially.

(II) For ϕ = a we prove that Fmin(〈s, a〉) = 1 if and only if s |= a for all
s ∈ S. If a ∈ L(s) we have s |= a and by Figure 3b, there is a hyper-edge
from the configuration 〈s, a〉 to the empty target set. As in (I) this means
that Fmin(〈s, a〉) = 1, which leaves us to consider a /∈ L(s). In this case
we obviously have s 6|= a and by the side-condition in Figure 3b, we can
conclude that there is no hyper-edge from the configuration 〈s, a〉 when
a /∈ L(s). Thus, we have Fmin(〈s, a〉) = 0 because Fmin is the minimum
post fixed-point assignment.

(III) For ϕ = ϕ1 ∧ ϕ2 we show that FGmin(〈s, ϕ1 ∧ ϕ2〉) = 1 if and only if
s |= ϕ1 ∧ ϕ2 for all s ∈ S. By Figure 4a, a configuration 〈s, ϕ1 ∧ ϕ2〉
has a single hyper-edge with the target set {〈s, ϕ1〉, 〈s, ϕ2〉}. With this
observation it is easy to see that Fmin(〈s, ϕ1 ∧ ϕ2〉) = 1 only holds if
Fmin(〈s, ϕ1〉) = 1 and Fmin(〈s, ϕ2〉) = 1. By the induction hypothesis,
s |= ϕ1 and s |= ϕ2, which following the semantics implies s |= ϕ1 ∧ ϕ2.

(IV) For ϕ = ϕ1∨ϕ2 we show that Fmin(〈s, ϕ1∨ϕ2〉) = 1 if and only if s |= ϕ1∨
ϕ2 for all s ∈ S. By Figure 4b, a configuration 〈s, ϕ1 ∧∨2〉 has two hyper-
edges with the target sets {〈s, ϕ1〉} and {〈s, ϕ2〉}. With this observation,
we have that Fmin(〈s, ϕ1 ∨ ϕ2〉) = 1 if and only if Fmin(〈s, ϕ1〉) = 1 or
Fmin(〈s, ϕ2〉) = 1. By the induction hypothesis this is equivalent to s |= ϕ1

or s |= ϕ2, which following the semantics implies s |= ϕ1 ∨ ϕ2.
(V) For ϕ = E ϕ1 U≤k ϕ2 we show that Fmin(〈s,E ϕ1 U≤k ϕ2〉) = 1 if and

only if s |= E ϕ1 U≤k ϕ2 for all s ∈ S. Recall the semantics for the
satisfaction of formula E ϕ1 U≤k ϕ2, requires that for some k′ ≤ k, there
exists a run σ and a position p ≥ 0 that satisfy the following conditions.

σ(p) |= ϕ2 (1)

σ(j) |= ϕ1 , for all j < p (2)

Wσ(p) ≤ k′ (3)

⇒: Assume that Fmin(〈s,E ϕ1 U≤k ϕ2〉) = 1, we now show that this
implies s |= E ϕ1 U≤k ϕ2.

10

We denote the iteration in which a configuration v was first assigned 1, as
Z(v), formally we write the auxiliary function Z as follows.

Z(v) =

{
i if F i(v) 6= F i−1(v)

∞ otherwise
(4)

For any configuration v it holds that Z(v) <∞ if and only if Fmin(v) = 1,
as a post fixed-point assignment must be reached in a finite number of
iterations. Considering Z(v) for a configuration v = 〈s,E ϕ1 U≤k ϕ2〉,
where Fmin(v) = 1, we see that in iteration Z(v) − 1, the assignment of
some configuration in the target-set for a hyper-edge to v must have been
changed to 1. From Figure 5 we see that there are two kinds of hyper-
edges, leading us to conclude that at least one of the following two cases
must hold.

A) Z(〈s, ϕ2〉) = Z(v)− 1, or
B) max{Z(〈s, ϕ1〉), Z(〈s′,E ϕ1 U≤k−w ϕ2〉)} = Z(v)−1, for some

s′, s.t. s
w→ s′.

We now show that Fmin(〈s,E ϕ1 U≤k ϕ2〉) = 1 implies the existence of
a run σ and a position p satisifying conditions 1, 2 and 3 for k′ ≤ k, by
induction on Z(〈s,E ϕ1 U≤k ϕ2〉).
First we observe that Z(〈s,E ϕ1 U≤k ϕ2〉) is always greater than 1, as
only configurations v having trivial hyper-edges (v, ∅) are assigned 1 in
the first iteration of F .
Base Case (Z(〈s,E ϕ1 U≤k ϕ2〉) = 2): In this case we know that case
(A) must hold, seeing that no configuration u = 〈s′,E ϕ1 U≤k−w ϕ2〉 can
have Z(u) = 1. From case (A), we have that Z(〈s, ϕ2〉) = 1, which means
that Fmin(〈s, ϕ2〉) = 1. By structural induction, Fmin(〈s, ϕ2〉) = 1 gives
us s |= ϕ2. Thus, any run σ = s . . . and position p = 0 satisfy conditions
1, 2 and 3 for k′ = 0, hence, it also holds for k′ ≤ k.
Inductive Step (Z(〈s,E ϕ1 U≤k ϕ2〉) > 2): Again, we consider cases (A)
and (B). If case (A) holds we can construct a run σ = s . . . and position
p = 0 as before. If (B) is the case, we have that Fmin(〈s, ϕ1〉) = 1 and
Fmin(〈s′,E ϕ1 U≤k−w ϕ2〉) = 1. By structural induction it follows from
Fmin(〈s, ϕ1〉) = 1 that s |= ϕ1.
Because Z(〈s′,E ϕ1 U≤k−w ϕ2〉) < Z(〈s,E ϕ1 U≤k ϕ2〉) it follows by
induction that there is a run σ = s′ . . . and a position p that satisfy
conditions 1, 2 and 3 for k′ ≤ k − w. Considering the extension σ′ = s

w→
s′ . . . of σ and position p′ = p + 1, we observe that σ′ and p′ also satisfy
the conditions for k′ ≤ k.
– Condition 1 holds because σ′(p′) = σ(p) and σ(p) |= ϕ2.
– Condition 2 holds since σ(0) = s, s |= ϕ1 and for all j < p we have
σ′(j + 1) = σ(j) and σ(j) |= ϕ1.

– Condition 3 holds due to the fact that Wσ(p) ≤ k − w implies
Wσ′(p

′) ≤ k, because Wσ′(p
′)−Wσ(p) = w.

⇐: Assume that s |= E ϕ1 U≤k ϕ2, we now show that this implies
Fmin(〈s,E ϕ1 U≤k ϕ2〉) = 1. From the semantics it follows that there

11

is a run σ and position p satisfying conditions 1, 2 and 3 for k′ ≤ k Let
s = s0, then we can write σ as follows.

σ = s0
w1→ s1 . . . sp−1

wp→ sp . . .

We show that Fmin(〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉) = 1 by induction on i start-
ing from p.
Base Case (i = p): By condition 1 of the semantics, sp |= ϕ2, which by
structural induction on ϕ implies Fmin(〈sp, ϕ2〉) = 1. In Figure 5, we ob-
serve that there is a hyper-edge from 〈sp,E ϕ1 U≤k−Wσ(i) ϕ2〉 to 〈sp, ϕ2〉,
thus, Fmin(〈sp, ϕ2〉) = 1 implies Fmin(〈sp,E ϕ1 U≤k−Wσ(i) ϕ2〉) = 1,
which proves our base case.
Inductive Step (i < p): By condition 2 of the semantics, si |= ϕ1, which
by structural induction on ϕ implies Fmin(〈si, ϕ1〉) = 1. By induction on i,
we know that Fmin(〈si+1,E ϕ1 U≤k−Wσ(i+1) ϕ2〉) = 1 holds. In Figure 5,
we observe that there is a hyper-edge e from 〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉 to the
target-set 〈si, ϕ1〉 and 〈si+1,E ϕ1 U≤k−Wσ(i+1) ϕ2〉, asWσ(i+1)−Wσ(i) =
wi+1, which is exactly the transition weight between si and si+1. Since
we know that Fmin(v) = 1 for all configurations v of the target-set of the
hyper-edge e, then it must follow that Fmin(〈si,E ϕ1 U≤k−Wσ(i) ϕ2〉) = 1
for all i ≤ p.

(VI) For ϕ = A ϕ1 U≤k ϕ2 we have that Fmin(〈s,E ϕ1 U≤k ϕ2〉) = 1 if and
only if s |= A ϕ1 U≤k ϕ2 for all s ∈ S. The proof strategy here is similar
to the previously shown case for ϕ = E ϕ1 U≤k ϕ2.
⇒: Assume that Fmin(〈s,A ϕ1 U≤k ϕ2〉) = 1, we now show that this
implies s |= A ϕ1 U≤k ϕ2.
⇐: Assume that s |= A ϕ1 U≤k ϕ2, we now show that this implies
Fmin(〈s,A ϕ1 U≤k ϕ2〉) = 1.

(VII) For ϕ = EX≤k ϕ we show that Fmin(〈s,EX≤k ϕ〉) = 1 if and only if
s |= EX≤k ϕ for all s ∈ S.
⇒:
Assume that Fmin(〈s,EX≤k ϕ〉) = 1, then it holds that s |= EX≤k ϕ.
In Figure 7, the configuration 〈s,EX≤k ϕ〉 has a hyper-edge for every

si ∈ {si | s
wi→ si and wi ≤ k}. Clearly, Fmin(〈s,EX≤k ϕ〉) = 1 if and only

if Fmin(〈si, ϕ〉) = 1 is the case for any such si. By the induction hypothesis
this is equivalent to si |= ϕ, which following the semantics implies that
s |= EX≤k ϕ.
⇐:
Assume that s |= EX≤k ϕ, then it holds that Fmin(〈s,EX≤k ϕ〉) = 1.
From the semantics, it must be the case that there exists an si, such that
s
wi→ si, with wi ≤ k, it holds that si |= ϕ. By the induction hypothesis, this

implies that Fmin(〈si, ϕ〉) = 1 for any such si. Since Fmin is a minimum
post fixed-point assignment the manner Figure 7 is constructed, we have
that Fmin(〈s,EX≤k ϕ〉) = 1.

(VIII) For ϕ = AX≤k ϕ we show that Fmin(〈s,AX≤k ϕ〉) = 1 if and only if
s |= AX≤k ϕ for all s ∈ S.

12

⇒:
Assume that Fmin(〈s,AX≤k ϕ〉) = 1, then it holds that s |= AX≤k ϕ.
In Figure 8, the configuration 〈s,AX≤k ϕ〉 has a single hyper-edge with

a target set on the form {〈s1, ϕ〉, . . . , 〈sn, ϕ〉}, for every si, such that s
wi→

si and wi ≤ k. It is clear that Fmin(〈s,AX≤k ϕ〉) = 1 if and only if
Fmin(〈si, ϕ〉) = 1 for all such si. Given the induction hypothesis, we have
that si |= ϕ for 1 ≤ i ≤ n, which implies that s |= AX≤k ϕ.
⇐:
Assume that s |= AX≤k ϕ, then it holds that Fmin(〈s,AX≤k ϕ〉) = 1.
By the semantics it must be that case that si |= ϕ, for all si such that

s
wi→ si, where wi ≤ k. By the induction hypothesis this implies that

Fmin(〈si, ϕ〉) = 1 for all such si. Since Fmin is a minimum post fixed-
point assignment and due to the construction in Figure 8, we have that
Fmin(〈s,AX≤k ϕ〉) = 1.

ut

Notice that the dependency graph for a WKS K and formula ϕ can be ex-
panded on-the-fly when successor configurations are first considered, i.e. succ(v)
used on line 4 and 16 in Algorithm 1. Configurations that have not yet been
observed are assigned the unknown value, ⊥.

s 1

{a}

Fig. 9: A simple WKS that may yield a large unfolding.

Example 3 Consider the dependency graph shown in Figure 9 and the for-
mula ϕ = E a U≤1000 b. In Figure 10 we see that the size of the dependency
graph grows in proportion to the initial bound on the formula and every
intermediate configuration reduces the bound by 1. This suggests that the
size of the dependency graph encoding is pseudo-polynomial in the size of
ϕ.

The size of a WKS K = (S,AP, L,→) is denoted by |K|. It is the sum of the
number of states, atomic propositions, labeling of states and size of the transition
system, |S|+

∑
s∈S |L(s)|+ |AP|+ |�|. The size of a WCTL formula ϕ is denoted

|ϕ|. The maximum bound B(ϕ) of ϕ is the maximum bound k appearing in an
existential or universal ”until” sub-formula in ϕ.

Theorem 4. Given a WKS K = (S,AP, L,→), a state s ∈ S and a WCTL
formula ϕ, the size of the dependency graph encoding of s |= ϕ from Definition
5 is O(|K| · |�| · |ϕ| · B(ϕ)).

Proof. If we recall that all configurations in the encoding consist of a state and
formula, it easy to see that the expansions in Figures 3a, 3b, 4a, 4b, 7 and 8

13

〈s,E a U≤1000 b〉

〈s,E a U≤999 b〉 〈s, a〉〈s, b〉

∅

〈s,E a U≤998 b〉

〈s,E a U≤997 b〉
...

〈s,E a U≤−1 b〉

Fig. 10: The dependency graph for the formula ϕ and example WKS in Figure 9.

give rise to at most O(|K| · |ϕ|) configurations. This follows from the fact that
successors in these expansions consist of a state and a sub formula of the source
formula.

This leaves us to consider the expansions from Figures 5 and 6. In these
expansions we have successor configurations with formulae that are not sub-
formulae, however, in this case the bound of the formula is reduced by some
non-negative weight. With B(ϕ) as a bound on the value of k in the existential
and universal ”until” expression, we have that these expansions give rise to at
most O(|K| · |ϕ| · B(ϕ)).

As for the number of hyper-edges leaving a configuration 〈s, ϕ〉 in the depen-
dency graph, we have that this is bounded by the number of outgoing edges from
s. However, we can have multiple weighted edges between two states, so for a
configuration, the number of hyper-edges is bounded by |�|. Thus, we conclude
that the size dependency graph is O(|K| · |�| · |ϕ| · B(ϕ)). ut

Corollary 1. Given a WKS K = (S,AP, L,→), a state s ∈ S and a WCTL
formula ϕ, s |= ϕ can be decided O(|K| · |�| · |ϕ| · B(ϕ)) time.

Proof. To decide s |= ϕ we encode the problem using Definition 5, from Theorem
4 the resulting dependency graph has a size of O(|K|·|�|·|ϕ|·B(ϕ)). By Theorem 2
Algorithm 1 we can compute the minimum post fixed-point assignment of 〈s, ϕ〉
in O(|G|) time. Thus, as |G| = O(|K| · |�| · |ϕ| · B(ϕ)), we can decide s |= ϕ in
O(|K| · |�| · |ϕ| · B(ϕ)) time. Correctness of this approach follows from Theorems
1 and 3. ut

Besides having an efficient algorithm, it is important to establish the com-
plexity of the model checking problem. Because the encoding presented in this

14

section is pseudo-polynomial, we cannot conclude that the WCTL model check-
ing problem is decidable in polynomial time. Notwithstanding, we shall later
show that the problem is, indeed, decidable in polynomial time.

15

5 Symbolic Dependency Graphs

With dependency graphs, we saw by example that it is easy to devise an ”until”
formula such that the size of the dependency graph encoding grows in proportion
to the bound. In Example 3 this happens because we need to establish whether
s |= E a U≤k−1 b in order to determine if s |= E a U≤k b for any bound k.
However, if we consider these formulas it is easy to see that s |= E a U≤k b
implies s |= E a U≤k+1 b and s 6|= E a U≤k b implies s 6|= E a U≤k−1 b.

In Section 6 we propose an encoding that captures the implications between
s |= E a U≤k b and s |= E a U≤k′ b by synthesizing the bound k for which
s |= E a U≤k b and s 6|= E a U≤k−1 b. This is accomplished by storing a number
for each configuration in an assignment, with ∞ as the initial value, which then
works its way down to the smallest possible bound k.

In the following we introduce symbolic dependency graphs with a more pow-
erful semantics, that will allow us to encode the entire WCTL model-checking
problem as a minimum post fixed-point computation on a (symbolic) dependency
graph of polynomial size.

Definition 6 (Symbolic Dependency Graph). A symbolic dependency
graph (SDG) is a pair G = (V,H,C), where

– V is a finite set of configurations,
– H ⊆ V × P(N× V) is a finite set of hyper-edges, and
– C ⊆ V × N× V is a finite set of cover-edges.

Let G = (V,H,C) be a symbolic dependency graph. For a hyper-edge e =
(v, T) ∈ H we call v the source configuration and T the target set of e, we say
that (w, u) ∈ T is a hyper-edge branch with weight w to target configuration u.
For a cover-edge (v, k, u) ∈ C, we call v the source configuration, k the cover
condition and u the target configuration. The successor set succ(v) = {(v, T) ∈
H} ∪ {(v, k, u) ∈ C} is the set of hyper-edges and cover-edges with v as the
source configuration.

An assignment A : V → N∪{∞} is a mapping from configurations to values.
We denote the set of all assignments Assign = V × N ∪ {∞}. A post fixed-
point assignment is an assignment A ∈ Assign, such that A = F (A) where
F : Assign → Assign is defined as follows.

F (A)(v) =


0 if ∃(v, k, v′) ∈ C s.t. k ≥ A(v′)

otherwise

min
(v,T)∈H

max{w +A(v′) | (w, v′) ∈ T}
(5)

If we consider the partial order v over assignments of a symbolic dependency
graph G, such that A v A′ if and only if A(v) ≥ A′(v) for all v ∈ V . Then it
follows from the Knaster-Tarski fixed-point theorem that there exists a unique
minimum post fixed-point assignment of G, denoted Fmin .

16

a

b

c d

∅

5

3

(a) Example of an SDG. Hyper-edges
are solid lines. Hyper-edge branches
have weight 0 unless if annotated with
a number. Cover-edges are dashed lines
annotated with a cover-condition.

i F i(a) F i(b) F i(c) F i(d)

0 ∞ ∞ ∞ ∞
1 ∞ ∞ ∞ 0
2 ∞ ∞ 0 0
3 ∞ 3 0 0
4 0 3 0 0
5 0 3 0 0

(b) Computation of the minimum post
fixed-point on the WKS from Figure
11a using the functor. In this example
the minimum post fixed-point assign-
ment is reached within four iterations.

Fig. 11: Symbolic dependency graph and table with intermediate assignments from
minimum post fixed-point computation by repeated functor application.

Notice that we say an assignment A is smaller than another assignment A′,
if values assigned by A are greater than or equal to those assigned by A′. Thus,
we have Amin(v) =∞ for all v ∈ V , is the smallest possible assignment.

The minimum post fixed-point assignment Fmin of G can be computed by
repeated application of the functor F i+1 = F (F i) starting from F0(v) =∞ for
all v ∈ V .

This is a monotonic function and although evaluated on an infinite complete
lattice, there is no infinite decreasing sequence natural numbers, hence, we must
reach a fixed point after a finite number of iterations. Thus, there exists an m ∈ N
such that Fm(v) = Fm+1(v) for all v ∈ V , in which case we have Fm = Fmin is
the minimum post-fixed point assignment of G.

Example 4 Figure 11a shows a symbolic dependency graph G = (V,H,C),
where

V = {a, b, c, d}
H = {(b, {(0, c), (3, d)}), (d, (0, ∅)}), (c, {(0, d)})}
C = {(a, 5, b)}

The intermediate results during computation of the minimum post-fixed
point assignment are displayed in Table 11b. From this table we can see that
the minimum post fixed-point assignment is reached within four iterations.
This follows from the fact that F4 = F5 in this example. Notice while
F i(v) ≥ F i+1(v), we have F i v F i+1 as we move up the lattice.

17

Lemma 1. Let G = (V,H, ∅) be an SDG without cover-edges and ci denote a
configuration which assignment changed to the smallest value in the i’th iteration
of the functor, formally written as follows.

ci = arg min
v∈{v∈V |Fi−1(v)>F i(v)}

F i(v)

It holds that F i(ci) = Fmin(ci).

Proof. To prove that Fmin(ci) = F i(ci), we show that Equation (13) holds. It
then trivially follows that F i(ci) is the minimum post fixed-point assignment of
ci, because no future smallest assignment in any iteration j > i becomes less
than F i(ci).

To show that Equation (13) holds, we observe that when the assignment of
configuration ci+1 is changed to the smallest value in the i+ 1’th iteration, then
its assignment must have become smaller in iteration i+ 1, written as Equation
(6).

F i(ci+1) > F i+1(ci+1) (6)

F i+1(ci+1) = max{w′ + F i(u′) | (w′, u′) ∈ T} (7)

F i−1(u) > F i(u) (8)

F i(u) ≥ F i(ci) (9)

This implies that there exists a hyper-edge (ci+1, T) ∈ H such that Equation
(7) holds. Because the value F i+1(ci+1) was not reached in the i’th iteration,
there must be a hyper-edge branch (w, u) ∈ T such that the assignment of
configuration u changed from the i − 1’th to the i’th iteration, which yields
Equation (8).

We know that the smallest assignment changed from the i− 1’th to the i’th
iteration is F i(ci). Hence, we get Equation (9), because no other assignment
made in the i’th iteration is smaller than F i(ci).

max{w′ + F i(u′) | (w′, u′) ∈ T} ≥ w + F i(u) (10)

F i+1(ci+1) ≥ w + F i(u) (11)

F i+1(ci+1) ≥ w + F i(ci) (12)

F i+1(ci+1) ≥ F i(ci) (13)

As the hyper-edge branch (w, u) for which the value of u changed is in T , we
observe that w+F i(u) must be less than equal to the right hand side of Equation
(7) giving us Equation (10). Substituting this back into Equation (7) and we get
Equation (11). We now recall the lower-bound on F i(u) from Equation (9) in
order to write Equation (12). Thus, we get Equation (13) as w must be non-
negative. ut

Theorem 5 (Complexity of Functor Application). Computing the mini-
mum post fixed-point assignment by repeated application of the functor can be
done in O(|V |) iterations and takes O(|V |3 · |C|+ |V |4 · |H|) time.

18

Proof. Computing a single iteration of the functor takes O(|V | · |C|+ |V |2 · |H|))
time, leaving us to show that the minimum post fixed-point assignment is reached
within O(|V |2) iterations.

If we consider a symbolic dependency graph without cover-edges G =
(V,H, ∅), we have that the minimum post-fixed point assignment is reached
within |V | iterations. This follows from Lemma 1 which states that for each it-
eration, there is at least one configuration that reaches its minimum post fixed
point assignment.

Now consider a symbolic dependency graph G = (V,H,C), where only one
configuration v has cover-edges, i.e. C ⊆ {(v, k, u) | k ∈ N and u ∈ V }. In this,
the case a cover-edge can change A(v) to zero, however, this can only happen
once. If this does not occur, we have the minimum post fixed-point assignment
after |V | iterations. However, should it happen that A(v) is set to zero by a
cover-edge within |V | iterations, no other cover-edge can affect the computation
(i.e. the value of A(v)) any further, and we have the minimum post fixed-point
assignment |V | iterations later. Thus, after |V | + |V | iterations, we must have
the minimum post fixed-point assignment.

For the general case of symbolic dependency graphs, where any configuration
may have cover-edges, we consider that if no cover-edge (v, k, u) changes A(v) to
zero, then we reach the minimum post fixed-point assignment in |V | iterations.
However, if A(v) is set to zero, then no cover-edge can affect A(v) again, as
it remains zero. We see that cover-edges can affect the computation at most
|V | configurations. Thus, after |V |2 iterations we must have the minimum post
fixed-point assignment.

Hence, we conclude that after O(|V |2) iterations, the minimum post fixed-
point assignment must be reached. Thus, we have shown that the minimum post
fixed-point assignment can be computed by repeated application of the functor
in O(|V |3 · |C|+ |V |4 · |H|) time. ut

We now propose a local algorithm for minimum post fixed-point compu-
tation on symbolic dependency graphs. Given a symbolic dependency graph
G = (V,H,C), Algorithm 2 computes the minimum post fixed-point assignment
Fmin(v0) of a configuration v0 ∈ V . This algorithm is an adoption of Algorithm
1, by Liu and Smolka, for minimum post fixed-point assignment computation on
dependency graphs.

Algorithm 2 uses the same data-structures as Algorithm 1. However, the
assignment A ranges over N ∪ {⊥,∞}, where ⊥ once again indicates that the
value is unknown at a particular configuration.

19

Algorithm 2: Symbolic Local Algorithm

Input: An SDG G = (V,H,C) and initial configuration v0 ∈ V
Output: Minimum post fixed-point assignment of v0, Fmin(v0)

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) =∞
3 W = succ(v0)
4 while W 6= ∅ do
5 Pick e ∈W
6 W = W \ {e}
7 if e = (v, T) is a hyper-edge then
8 if ∃(w, u) ∈ T where A(u) =∞ then
9 D(u) = D(u) ∪ {e}

10 else if ∃(w, u) ∈ T where A(u) = ⊥ then
11 A(u) =∞
12 D(u) = {e}
13 W = W ∪ succ(u)

14 else
15 a = max{A(u) + w | (w, u) ∈ T}
16 if a < A(v) then
17 A(v) = a
18 W = W ∪D(v)

19 let (w, u) = arg max
(w,u)∈T

A(u) + w

20 if A(u) > 0 then
21 D(u) = D(u) ∪ {e}

22 else if e = (v, k, u) is a cover-edge then
23 if A(u) = ⊥ then
24 A(u) =∞
25 D(u) = {e}
26 W = W ∪ succ(u)

27 else if k ≥ A(u) then
28 A(v) = 0
29 if A(v) was changed then
30 W = W ∪D(v)

31 else
32 D(u) = D(u) ∪ {e}

33 return A(v0)

20

Example 5 Table 1 lists the values of the assignment A, the queue W and
dependency set D while executing Algorithm 2 on the SDG from Example
4 (illustrated in Figure 11a). Each row displays the values for a given iter-
ation, e.g. row 1 contains that values upon first entering the while-loop of
Algorithm 2. The value of the dependency set D(a) for a is not shown in
the table because it remains empty.

Notice that the values of A are strictly non-increasing as the number of
iterations increases, and the final value of A is the minimum post fixed-point
assignment for the configurations that were examined, in order to determine
the value of Fmin(a).

A(a) A(b) A(c) A(d) W D(b) D(c) D(d)

1 ∞ ⊥ ⊥ ⊥ (a, 5, b)
2 ∞ ∞ ⊥ ⊥ (b, {(0, c), (3, d)}) (a, 5, b)
3 ∞ ∞ ∞ ⊥ (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)})
4 ∞ ∞ ∞ ∞ (d, ∅) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
5 ∞ ∞ ∞ 0 (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
6 ∞ ∞ 0 0 (b, {(0, c), (3, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
7 ∞ 3 0 0 (a, 5, b) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
8 0 3 0 0 (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})

Table 1: Execution steps of Algorithm 2 when executed on the symbolic dependency
graph from Example 4 illustrated in Figure 11a.

Lemma 2. For every configuration v ∈ V , the while-loop in Algorithm 2 has
the following invariants.

1) If A(v) 6= ⊥ then A(v) ≥ Fmin(v),
2) If A(v) 6= ⊥ and e = (v, T) ∈ H, then either

a) e ∈W ,
b) e ∈ D(u) and A(v) ≤ x for some (w, u) ∈ T s.t. x = A(u) + w, where

x ≥ A(u′) + w′ for all (w′, u′) ∈ T , or
c) A(v) = 0.

3) If A(v) 6= ⊥ and e = (v, k, u) ∈ C, then either
a) e ∈W ,
b) e ∈ D(u) and A(u) > k, or
c) A(v) = 0.

Proof. We prove the invariants with the inductive argument that if the invariant
holds at the beginning of the every iteration of the while-loop, it also holds at
the end of every iteration.

Invariant (1): Initially, we have that A(v) = ⊥, for all v ∈ V \ {v0}, and
A(v0) = ∞ for the initial configuration v0. Hence, the invariant holds trivially
the first time the while-loop is entered.

21

We observe that the assignment A is only updated in lines 11, 17, 24 and 28
of Algorithm 2. From this, there are three different cases to consider regarding
the updated value of A.

In lines 11 and 24, A(v) is assigned the value ∞. Because A(v) = ∞ ≥
Fmin(v), it is clear that the invariant holds.

In line 17, A(v) is assigned the value max{A(u) + w | (w, u) ∈ T} for a
hyper-edge (v, T), if the value of this expression is strictly smaller than the
current value of the assignment of v. This corresponds to the ”otherwise” case
of the functor in Equation 5, hence the invariant holds.

In line 28, A(v) is assigned the value 0, if there exists a cover-edge (v, k, u)
where A(u) ≤ k, which corresponds to the first case of the functor in Equation
5. Thus, we have shown that invariant (1) holds.

Invariants (2) and (3): The two invariants hold initially, because A(v) = ⊥
for all v ∈ V \ {v0} and for the initial configuration v0, we have that W =
succ(v0). So, every hyper-/cover-edge with the source configuration v0 is in W ,
which gives rise to cases (2a) and (3a).

We observe that, whenever a hyper-/cover-edge e is removed from W , it is
added to the dependency set D(u) of a target configuration u in e, unless it is
the case that A(v) has the value 0. With this observation, and the fact that when
we explore a new configuration u by setting A(u) = ∞, we always add succ(u)
to W . It is easy to see that invariants 2 and 3 hold. ut

Theorem 6 (Algorithm 2 Termination). Algorithm 2 terminates.

Proof. The while-loop in Algorithm 2 finishes when the queue W is empty (W =
∅), resulting in the termination of Algorithm 2. To prove that this eventually
occurs, we observe that whenever cover-/hyper-edges are added to W , then in the
same iteration, there is a configuration v such that the value of A(v) decreases
or A(v) changes from ⊥ to ∞. Moreover, we notice that A(v) is always non-
increasing and once the value of A(v) changes from ⊥, it is never assigned the
value ⊥ again. Due to the fact that it is always the case that A(v) ≥ 0, then it
follows that in Algorithm 2, the cover-/hyper-edges are only added to W a finite
number of times. Thus, Algorithm 2 must terminate. ut

Theorem 7 (Algorithm 2 Correctness). Upon termination of Algorithm 2
on the input a symbolic dependency graph G = (V,H,C), it holds that A(v) 6= ⊥
implies A(v) = Fmin(v) for all v ∈ V .

Proof. We prove correctness of Algorithm 2 by examining the cases of Lemma
2.

From invariant (1) of Lemma 2, we have that for all v ∈ V , where A(v) 6= ⊥,
it holds that A(v) ≥ Fmin(v), leaving us to show that A(v) is also a post fixed-
point assignment.

To prove that A(v) is post fixed-point assignment for all v ∈ V where A(v) 6=
⊥, we must show that A(v) = F (A)(v). From the definition of the functor
(Equation 5) we see that the two following cases must be considered.

i) If there exists (v, k, u) ∈ C and A(u) ≤ k, then A(v) = 0.

22

ii) For any (v, T) ∈ H and x = max{A(u′) +w′ | (w′, u′) ∈ T}, then A(v) ≤ x.

First we consider case (i). We prove by contradiction that A(v) = 0. As-
sume that A(v) > 0. Considering invariant 3, we observe that the algorithm has
terminated, thus, W = ∅ and case 3a cannot hold. This means that either case
3b or case 3c must hold. Since A(v) 6= 0, we know that case 3c does not hold,
leaving us to conclude that case 3b holds. By case 3b, we have A(u) > k, which
contradicts A(u) ≤ k. Thus, we must have A(v) = 0, proving (i).

For case (ii). We prove by contradiction that A(v) ≤ x. Assume that
A(v) > x. Considering invariant 2, we observe as before that the algorithm
has terminated, thus, W = ∅ and case 2a cannot hold. Hence, either case 2b or
case 2c must hold. Because x ≥ 0 and we assumed A(v) > x, it must be the case
that A(v) 6= 0, so we know that case 2c cannot hold. This leaves us with case
2b, which by Lemma 2 must hold.

By case 2b, we have that there exists a hyper-edge branch (w, u) ∈ T , s.t.
A(v) ≤ x′, where x′ = A(u) + w and x′ ≥ A(u′) + w′ for all (w′, u′) ∈ T . As
both x and x′ are the maximum value of the set {A(u′) + w′ | (w′, u′) ∈ T}, it
must be the case that x = x′. Thus, A(v) ≤ x′ contradicts our assumption that
A(v) > x. Therefore, it must be the case that A(v) ≤ x.

Consequently, we conclude that upon termination of Algorithm 2, it holds
that for all v ∈ V , where A(v) 6= ⊥, the assignment A(v) is the minimum post
fixed-point assignment of v. ut

Corollary 2. Given a symbolic dependency graph G = (V,H,C) and an ini-
tial configuration v0 ∈ V , Algorithm 2 computes the minimum post fixed-point
assignment of v0 in G.

Proof. We only assign ⊥ in line 1 and since A(v0) is assigned ∞ initially, we
cannot have A(v0) = ⊥ upon when finishing the while-loop. Thus, in line 33 of
Algorithm 2 we have A(v0) = Fmin(v0) by Theorem 7. Consequently, Algorithm
2 returns the minimum post fixed-point assignment of v0, Fmin(v0). ut

23

6 Model Checking with Symbolic Dependency Graphs

In this section we present an encoding of a WKS and a WCTL formula as a
symbolic dependency graph. In turn this is used for checking whether or not
the WKS satisfies the WCTL formula, by computation of the minimum post
fixed-point assignment.

Definition 7 (Formula Satisfiability Encoding). Given WKS K, state s
and a WCTL formula ϕ, we can encode the model checking problem as a symbolic
dependency graph. Every configuration in the graph consists of a state and a
formula. The dependency graph is expanded from the initial configuration 〈s, ϕ〉
using the rules illustrated in Figures 3a, 3b, 4a, 4b, 7, 8, 12a, 12b, 13 and 14.

Theorem 8 (Encoding Correctness). Let K = (S,AP, L,→) be a WKS,
s ∈ S a state, ϕ a WCTL formula and G be a symbolic dependency graph
expanded from 〈s, ϕ〉 following Definition 7. We have that s |= ϕ if and only
if Fmin(〈s, ϕ〉) = 0.

Proof. The proof is similar to that of Theorem 3.

〈s,E ϕ1 U≤k ϕ2〉

〈s,E ϕ1 U≤? ϕ2〉

k

(a) The existential until case.

〈s,A ϕ1 U≤k ϕ2〉

〈s,A ϕ1 U≤? ϕ2〉

k

(b) The universal until case.

Fig. 12: Expansion of until expression configurations with specific cover-condition k.

〈s,E ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤? ϕ2〉 〈sn,E ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

Fig. 13: Successors of a existential until configuration.

Example 6 Figure 15 illustrates the symbolic dependency graph encoding
of E a U≤1000 b for the configuration s in the WKS in Figure 9, Example 3.
The dependency graph encoding of the same query is shown in Figure 10.

It is clear that the symbolic dependency graph encoding is much smaller
than the dependency graph encoding in Example 3 unfolds the bound 1000
one at a time. The minimum post fixed-point assignment of this symbolic

24

〈s,A ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤? ϕ2〉 〈sn,A ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

Fig. 14: Successors of a universal until configuration. Notice that the set of successors
is never empty as we are only considering non-blocking WKSs.

〈s,E a U≤1000 b〉

〈s,E a U≤? b〉

〈s, b〉 〈s, a〉

∅

1000

1

Fig. 15: Symbolic dependency graph encoding of the formula s |= E a U≤1000 b for the
WKS in Figure 9.

25

dependency graph is reached with a single iteration of the functor (Equation
5). From this we can conclude that s 6|= E a U≤1000 b.

Theorem 9 (Encoding Size). Given a WKS K = (S,AP, L,→), a state s ∈ S
and a WCTL formula ϕ, the size of the symbolic dependency graph encoding of
s |= ϕ from Definition 7 is O(|K| · |�| · |ϕ|).

Proof. If we recall that all configurations in the encoding consists of a state and
formula, it easy to see that the expansions gives rise to at most O(|K| · |ϕ|)
configurations. This follows from the fact that the only new formulas introduced
in the expansions are existential and universal ’until’ formulas with the bound
’?’. However, this makes the number of formulas bounded by 2 · |ϕ|, thus, the
number of configurations is bounded by |K| · 2 · |ϕ|, which is O(|K| · |ϕ|).

This leaves us to consider the number of hyper-edges leaving a configuration
〈s, ϕ〉 in the SDG, and we have that this is bounded by the number of outgoing
edges from s. However, we can have multiple weighted edges between two states,
so for a configuration the number of hyper-edges is bounded by | → |. Therefore,
we conclude that the size of the SDG is O(|K| · |�| · |ϕ|). ut

Theorem 10 (WCTL Satisfiability is in P). Given a WKS K =
(S,AP, L,→), a state s ∈ S and a WCTL formula ϕ, s |= ϕ can be decided
in O(|K|5 · |ϕ|5 · |�|5) time.

Proof. To decide s |= ϕ, we encode the problem using Definition 7. From Theo-
rem 9, the size of the resulting symbolic dependency graph is O(|K| · |�| · |ϕ|). By
Theorem 5, the minimum post fixed-point assignment of 〈s, ϕ〉 can be computed
in O(|V |3 · |C|+ |V |4 · |H|) time. Thus, as |V |, |C| and |H| are O(|K| · |�| · |ϕ|),
we have decided s |= ϕ in O(|K|5 · |ϕ|5 · |�|5) time. Correctness of this approach
follows from Theorem 8. ut

Notice that the complexity bounds in Theorem 9 and 10 are by no means
tight. Nevertheless, these results are sufficient for what we wanted to show and
avoid unnecessary technicalities. After all the main result is that WCTL formulae
satisfiability can be decided in polynomial time. As we shall see in the following,
Algorithm 2 may exhibit exponential running time, still, we strongly believe that
with further improvements to this algorithm, it is possible to provide a better
complexity bound than in Theorem 5.

s0 s1 s2 s3 sn ∅. . .

0 0 0

20 21 22

Fig. 16: A symbolic dependency graph that can take exponential running time with
Algorithm 2, if edges are chosen according to the strategy outlined in Equation 14.

26

Theorem 11 (Lower Bound Complexity of Local Algorithm). The run-
ning time of Algorithm 2 can be exponential in the size of the symbolic depen-
dency graph.

Proof. Consider the execution of Algorithm 2 on a symbolic dependency graph
with n+ 1 configurations on the form shown in Figure 16, with the initial con-
figuration s0. We pick edges from W in line 5 of Algorithm 2 using the following
strategy.

Pick(W) =

(si, {(2i, si+1)}) if ∃(si, {(2i, si+1)}) ∈W
arg min

(si,{(0,si+1)})∈W
i otherwise (14)

Under these conditions the initial assignment∞ of A(s0) is followed by 2n+1−1,
which is then followed by 2n+1 − 2, 2n+1 − 3, . . ., and so on, counting all the
way down to 0. Obviously, counting this takes O(2n+1), while the size of the
symbolic dependency graph is only polynomial in n. Thus, Algorithm 2 can take
exponential time. ut

While Theorem 11 states that the local algorithm for minimum post fixed-
point computation on symbolic dependency graphs can take exponential time,
this is a degenerate case. In practice these cases are rare and if edges are picked
from the queue W in a first-in first-out order, or first-in last-out order, we do
not believe that the algorithm exhibits exponential running time.

7 Experimental Results

In this section we present, WKTool, a proof of concept implementation of the
algorithms and encodings presented in this paper. We then evaluate the execu-
tion time of the different algorithms, concluding that the local algorithm on a
symbolic dependency graph encoding of the model checking problem is the most
efficient.

WKTool takes a WKS, a state s and a WCTL formula ϕ as input to evaluate
whether s |= ϕ. This can be done with four strategies, first the model checking
problem is translated to a dependency graph or a symbolic dependency graph,
using Definition 5 and Definition 7, respectively. Then the minimum post fixed-
point assignment of the (symbolic) dependency graph is computed, either by
repeated application of the functor or using a local algorithm for the configura-
tion 〈s, ϕ〉.

The local algorithm for dependency graphs is Algorithm 1 and Algorithm 2
for symbolic dependency graphs. In the implementation of these algorithms the
translation to dependency graphs or symbolic dependency graphs is executed
on-the-fly during exploration. In this paper we have used succ(v) in both Al-
gorithm 1 and Algorithm 2 to denote the edges leaving configuration v. In the
implementation succ is implemented to create the edges and configurations the
first time they are requested. In addition, references to them are kept, so they
can be reused for later requests.

27

The implementation of repeated functor application for dependency graphs
and symbolic dependency graph in WKTool is relatively straightforward.
Though, the implementation does have some trivial optimizations, such as skip-
ping configurations that are already satisfied. The implementation also updates
the same assignment it is writing to, since maintaining two and swapping them
at the end of each functor application would be more complicated. This just
to say, that although the implementation is fairly simple, it is not unreasonbly
naive.

WKTool has a web-based front-end, is written in CoffeeScript and available at
http://jonasfj.github.com/WKTool/. The tool is entirely browser-based, only
using a small Java applet-based nanotimer for precise benchmarking. WKTool
also has a command-line client running on Node.js (≥ 0.8), which was used to
conduct the experiments presented in this section.

Experiments were conducted on a laptop (Intel Core i7) running Ubuntu.
Benchmarks were run on 1000 randomly generated WKS models, where s1 |=
E a U≤6 b and s1 6|= A a U≤10 b holds. The number of states of each model was
between 40 and 80 and all states were labeled with the atomic proposition a and
had a 10% chance of also being labeled with the atomic proposition b. Every
state had 1 to 5 outgoing transitions with weight between 0 and 8. Execution
times were measured in real-time using a high resolution nanosecond timer. The
initial setup and time needed to parse models and formulae is not included in
the measurements.

Functor
(DG)

Local
(DG)

Functor
(SDG)

Local
(SDG)

500ms

1s

1.5s

(E
x
ec

u
ti

o
n

T
im

e)

s1 |= E a U≤10 b

s1 6|= E a U≤10 c

s1 6|= A a U≤10 b

Fig. 17: Comparison of execution times for functor and local algorithm, using depen-
dency graph (DG) and symbolic dependency graph (SDG) encodings.

In Figure 17 we see the execution time needed to conclude s1 |= E a U≤10 b,
s1 6|= E a U≤10 c and s1 6|= A a U≤10 b on the 1000 randomly generated WKS
models. From this figure we see that the local algorithms are better than re-
peated functor application, especially, when checking A a U≤10 b. If we recall
the expansion for configurations on the form 〈s,A a U≤k b〉, we notice that it
only have has two hyper-edges, and if s 6|= b it requires all of its successor config-
urations in the other hyper-edge to hold. The local algorithms can exploit this
to finish early, if it can conclude that the property does not hold in just one of
these successors.

28

http://jonasfj.github.com/WKTool/

From Figure 17 we are also hinted that this symbolic dependency graph
encoding and accompanying algorithms are faster than the dependency graph
encoding. This is not surprising, as Theorem 4 concludes that the size of the
dependency graph encoding is pseudo-polynomial in the size of the input. Next
we shall see that, if we increase the bound k in the WCTL formula E a U≤k b,
then the execution time of the dependency graph-based grows exponentially.

6 7 8 9 10 11 12 13 14

500ms

1s

10s

1min

Bound k for checking s1 |= E a U≤k b

(E
x
ec

u
ti

o
n

T
im

e)

Functor (DG)

Local (DG)

Functor (SDG)

Local (SDG)

Fig. 18: A semi-log plot of the execution time as a function of the bound given in an
existential ”until” property. The y-axis is logarithmic in the exeuction time, while the
x-axis is linear in the bound k.

In Figure 18 we see how the execution time evolves as the bound k grows in
the WCTL formula E a U≤k b. Keeping in mind that the y-axis of the plot scales
logarithmicly, it is easy to see that the execution time is exponential in the bound
k for algorithms running on the dependency graph encoding. Meanwhile, the
execution time of the strategies using the symbolic dependency graph encoding
are virtually unaffected of the bound.

The reader may notice that the dependency graph encoding is faster for
small bounds. This is the case because the dependency graph encoding does
not expand further when the bound becomes zero. In contrast, the symbolic
dependency graph encoding continues exploring states, even though they are
not reachable within the bound. This suggests that further optimization of the
symbolic dependency graph encoding and accompanying algorithms, might be
interesting.

The experiments presented in this section are by no means exhaustive, yet we
believe that they indicate that local fixed-point algorithms and symbolic encod-
ing for WCTL model checking are worthwhile. Nevertheless, it is still important
to investigate the performance of these algorithms on more complex models and
properties.

8 Conclusion

We have formalized weighted Kripke structures, weighted computation tree logic
(WCTL) and described a semantics for this logic. Then we demonstrated how
to solve the model checking problem of WCTL formulae w.r.t. weighted Kripke

29

structures using Liu and Smolkas local algorithm for dependency graphs. We
argued that this approach is pseudo-polynomial in the upper bounds of WCTL
formulae and improve on this complexity by extending dependency graphs in
the form of symbolic dependency graphs. A local algorithm for model check-
ing WCTL formulae on weighted Kripke structures using symbolic dependency
graphs is then presented. We proved its correctness and showed that the size of
the symbolic encoding is polynomial in the input and that WCTL formulae can
be satisfied in polynomial time. Experimental results are encouraging, as they
indicate that the symbolic algorithm yields substantial improvements over the
dependency graph-based approach in relation to WCTL model checking. Lastly,
we summarize the complexity results of this paper in Table 2

Encoding size Satisfiability of formulae

Dependency Graphs O(|K| · |�| · |ϕ| · B(ϕ)) O(|K| · |�| · |ϕ| · B(ϕ))

Symbolic Dependency Graphs O(|K| · |�| · |ϕ|) polynomial

Table 2: A summary of the complexity results in this paper, where K = (S,AP, L,→)
is the input model, ϕ is the WCTL formula and B(ϕ) is the upper bound on the k
parameter of a formula in ϕ.

8.1 Future Work

In the following we propose possible directions for future work. First of all, it is
of interest to define a process algebra like CCS for weighted Kripke structures
as it would allow one to express weighted systems running in parallel. Hence,
it would make modeling less cumbersome and provide more interesting systems
to verify. A weighted CCS could simply be an extension of the usual CCS with
weights on the action-prefixes of processes, e.g. if an action a of some process P
should carry weight 5, we could write it as a[5].P .

It is worth investigating if it is possible to adapt our framework to support
alternating fixed points, because it could allow one to model check a more expres-
sive weighted logic. Alternating fixed points could allow us to describe liveness
and fairness properties. Liu, Ramakrishnan and Smolka demonstrate how a local
algorithm for partitioned dependency graphs enables the evaluation of alternat-
ing fixed points in [6]. A starting point could be to examine this framework and
determine if it can be put to practical use for our logic.

The logic described in this paper only supports upper bounds on the weights
of formulae. It makes sense to extend this logic to also support lower bounds,
because it enables us to pose other kinds of queries. There are two obvious ways
to extend the logic. The first way is to augment the syntax of the ”until” and
”next” operators with the usual comparison operators ./= {<,≤,=,≥, >}. The
second way is to replace the bounds on formulae with an interval [k1, k2]. What
remains to be answered is whether the latter approach is strictly more expressive
than the former and perhaps more importantly how to adapt the algorithm for
the extended logic.

Finally, we could take the extended logic a step further and introduce pa-
rameters to the formulae and perhaps also the model. The algorithm could then

30

be altered to also synthesize the parameters, if any, such that a given formula is
satisfied.

References

1. Henrik Reif Andersen. Model checking and boolean graphs. Theoretical Computer
Science, 126(1):3 – 30, 1994.

2. Peter Buchholz and Peter Kemper. Model checking for a class of weighted
automata. Discrete Event Dynamic Systems, 20:103–137, 2010.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142
– 170, 1992.

4. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In IN
CONCUR 05, LNCS 3653, pages 66–80. Springer, 2005.

5. Kim G. Larsen, Uli Fahrenberg, and Claus R. Thrane. A quantitative
characterization of weighted kripke structures in temporal logic. In MEMICS,
2009.

6. Xinxin Liu, C.R. Ramakrishnan, and ScottA. Smolka. Fully local and efficient
evaluation of alternating fixed points. In Bernhard Steffen, editor, Tools and
Algorithms for the Construction and Analysis of Systems, volume 1384 of Lecture
Notes in Computer Science, pages 5–19. Springer Berlin Heidelberg, 1998.

7. Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points (extended abstract). In ICALP, pages 53–66, 1998.

31

	Local Model Checking of Weighted CTL

