Local Model Checking of Weighted CTL with Upper-Bound Constraints

Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaerlund Oestergaard

Department of Computer Science, Aalborg University Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

July 8, 2013

Introduction

- Model checking both functional and quantitative properties.
 - Embedded systems resources are very limited.
 - Resource constraints: cost, memory, bandwidth, power, etc.
- We extend well-known models and temporal logic:
 - Weighted CTL & weighted Kripke structures.
- Efficient model checking of WCTL:
 - Symbolic dependency graphs
 - Local/on-the-fly fixed-point algorithm

Outline

- Weighted Model Checking
- Dependency graphs
- Symbolic dependency graphs
- Experiments
- Conclusion

Weighted Kripke Structure

Definition (WKS)

A WKS is a tuple $\mathcal{K} = (S, \mathcal{AP}, L, \rightarrow)$, where

- S is a finite set of states,
- \mathcal{AP} is a set of atomic propositions,
- $L:S \rightarrow \mathcal{P}(\mathcal{AP})$ is a labelling function, and
- $\rightarrow \subseteq S \times \mathbb{N}_0 \times S$ is a transition relation.

Weighted Computation Tree Logic (WCTL)

The set of WCTL formulas is given as follows.

 $\varphi ::= true \mid false$ (Boolean Properties) (Atomic Proposition) a $\varphi_1 \wedge \varphi_2$ (Conjunction) $\varphi_1 \vee \varphi_2$ (Disjunction) $\mid E \varphi_1 \ U_{\leq k} \varphi_2$ (Existential Until) $|A \varphi_1 U_{\leq k} \varphi_2|$ (Universal Until) $EX_{\leq k} \varphi$ (Existential Next) $AX_{\leq k} \varphi$ (Universal Next)

where $k \in \mathbb{N}_0$ and $a \in \mathcal{AP}$.

We have that

$$s_1 \models E \ a \ U_{\leq 8} \ b$$
$$s_1 \not\models E \ a \ U_{\leq 4} \ b$$

Consider the only run

Symbolic Dependency Graphs Experiments

Dependency Graph (1)

Definition (Dependency Graph)

A DG is a pair G = (V, E), where

- V is a set of configurations, and
- $E \subseteq V \times \mathcal{P}(V)$ is a set of hyper-edges.
- An assignment is a mapping $A: V \rightarrow \{1, 0\}$
- A_{min} is the minimum fixed-point assignment.

$$\begin{split} A_{min}(u) &= 1 \text{ if there is } (u, \, T) \in E \text{ s.t.} \\ \text{for all } v \in T \text{ we have } A_{min}(v) &= 1. \end{split}$$

Functor

$$F(A)(u) = \bigvee_{(u,T)\in E} \left(\bigwedge_{v\in T} A(v)\right)$$

 $A_{min} = F(F(\ldots F(A_0)))$ where $A_0(v) = 0$

Example

 $A_{min}(y) = 1$ as $(y, \emptyset) \in E$

Symbolic Dependency Graphs Experimen

Dependency Graph (2)

Definition (Dependency Graph)

A DG is a pair G = (V, E), where

- V is a set of configurations, and
- $E \subseteq V \times \mathcal{P}(V)$ is a set of hyper-edges.
- An assignment is a mapping $A: V \rightarrow \{1, 0\}$
- A_{min} is the minimum fixed-point assignment.

 $\begin{aligned} A_{min}(u) &= 1 \text{ if there is } (u, T) \in E \text{ s.t.} \\ \text{for all } v \in T \text{ we have } A_{min}(v) &= 1. \end{aligned}$

Functor

$$F(A)(u) = \bigvee_{(u,T)\in E} \left(\bigwedge_{v\in T} A(v)\right)$$

 $A_{min} = F(F(\ldots F(A_0)))$ where $A_0(v) = 0$

$$A_{\min}(q) = 0$$

Dependency Graph (3)

Definition (Dependency Graph)

A DG is a pair G = (V, E), where

- V is a set of configurations, and
- $E \subseteq V \times \mathcal{P}(V)$ is a set of hyper-edges.
- An assignment is a mapping $A: V \rightarrow \{1, 0\}$
- A_{min} is the minimum fixed-point assignment.

$$\begin{split} A_{min}(u) &= 1 \text{ if there is } (u, \, T) \in E \text{ s.t.} \\ \text{for all } v \in T \text{ we have } A_{min}(v) = 1. \end{split}$$

Functor

$$F(A)(u) = \bigvee_{(u,T)\in E} \left(\bigwedge_{v\in T} A(v)\right)$$

 $A_{min} = F(F(\ldots F(A_0)))$ where $A_0(v) = 0$

$$A_{min}(z) = A_{min}(y) \lor A_{min}(q)$$

Dependency Graph (4)

Definition (Dependency Graph)

A DG is a pair G = (V, E), where

- V is a set of configurations, and
- $E \subseteq V \times \mathcal{P}(V)$ is a set of hyper-edges.
- An assignment is a mapping $A: V \rightarrow \{1, 0\}$
- A_{min} is the minimum fixed-point assignment.

 $\begin{aligned} A_{min}(u) &= 1 \text{ if there is } (u, T) \in E \text{ s.t.} \\ \text{for all } v \in T \text{ we have } A_{min}(v) &= 1. \end{aligned}$

Functor

$$F(A)(u) = \bigvee_{(u,T)\in E} \left(\bigwedge_{v\in T} A(v)\right)$$

 $A_{min} = F(F(\ldots F(A_0)))$ where $A_0(v) = 0$

$$A_{min}(x) = A_{min}(y) \wedge A_{min}(z)$$

WCTL Model Checking with Dependency Graphs

Theorem 2

$$s \models \varphi \quad \Leftrightarrow \quad A_{min}(\langle s, \varphi \rangle) = 1$$

Encoding Example ($\varphi = true$)

We have the vacuous case, $A_{min}(u) = 1$ for all u in \emptyset , hence

$$A_{min}(\langle s, true \rangle) = 1$$

Encoding Example ($\varphi = false$)

We have the trivial case, as $\langle s, false \rangle$ has no hyper-edges, hence

$$A_{min}(\langle s, false \rangle) = 0$$

Model Checking Example

Symbolic Dependency Graphs

Definition (Symbolic Dependency Graphs)

An SDG is a triple G = (V, H, C), where

- V is a finite set of configurations,
- $H \subseteq V \times \mathcal{P}(\mathbb{N}_0 \times V)$ is a finite set of hyper-edges, and
- $C \subseteq V \times \mathbb{N}_0 \times V$ is a finite set of cover-edges.

Fixed-Point A_{min} of an SDG (1)

An assignment is a mapping $A: V \to \mathbb{N}_0 \cup \{\infty\}$ Functor for minimum fixed-point A_{min}

$$F(A)(u) = \begin{cases} 0 & \text{if } \exists (u,k,v) \in C \text{ s.t. } A(v) \leq k \\ \min_{(u,T) \in H} \left(\max\{w + A(v) \mid (w,v) \in T\} \right) & \text{otherwise.} \end{cases}$$

$$A_{min} = F(\ldots F(A_0))$$
 where $A_0(v) = \infty$.

Example

 $A_{min}(q) = 0$ as $(q, \emptyset) \in E$

Fixed-Point A_{min} of an SDG (2)

An assignment is a mapping $A: V \to \mathbb{N}_0 \cup \{\infty\}$ Functor for minimum fixed-point A_{min}

$$F(A)(u) = \begin{cases} 0 & \text{if } \exists (u,k,v) \in C \text{ s.t. } A(v) \leq k \\ \min_{(u,T) \in H} \left(\max\{w + A(v) \mid (w,v) \in T\} \right) & \text{otherwise.} \end{cases}$$

$$A_{min} = F(\ldots F(A_0))$$
 where $A_0(v) = \infty$.

Example

 $A_{min}(t) = \infty$

Fixed-Point A_{min} of an SDG (3)

An assignment is a mapping $A: V \to \mathbb{N}_0 \cup \{\infty\}$ Functor for minimum fixed-point A_{min}

$$F(A)(u) = \begin{cases} 0 & \text{if } \exists (u,k,v) \in C \text{ s.t. } A(v) \leq k \\ \min_{(u,T) \in H} \left(\max\{w + A(v) \mid (w,v) \in T\} \right) & \text{otherwise.} \end{cases}$$

$$A_{min} = F(\ldots F(A_0))$$
 where $A_0(v) = \infty$.

Example

 $A_{min}(z) = \min(2 + A_{min}(q), 2 + A_{min}(t))$

Fixed-Point A_{min} of an SDG (4)

An assignment is a mapping $A: V \to \mathbb{N}_0 \cup \{\infty\}$ Functor for minimum fixed-point A_{min}

$$F(A)(u) = \begin{cases} 0 & \text{if } \exists (u,k,v) \in C \text{ s.t. } A(v) \leq k \\ \min_{(u,T) \in H} \left(\max\{w + A(v) \mid (w,v) \in T\} \right) & \text{otherwise.} \end{cases}$$

$$A_{min} = F(\ldots F(A_0))$$
 where $A_0(v) = \infty$.

Example

 $A_{min}(y) = \max(3 + A_{min}(z), 4 + A_{min}(q))$

Fixed-Point A_{min} of an SDG (5)

An assignment is a mapping $A: V \to \mathbb{N}_0 \cup \{\infty\}$ Functor for minimum fixed-point A_{min}

$$F(A)(u) = \begin{cases} 0 & \text{if } \exists (u,k,v) \in C \text{ s.t. } A(v) \leq k \\ \min_{(u,T) \in H} \left(\max\{w + A(v) \mid (w,v) \in T\} \right) & \text{otherwise.} \end{cases}$$

 $A_{min} = F(\ldots F(A_0))$ where $A_0(v) = \infty$.

WCTL Model Checking with SDGs

Theorem 5

$$s \models \varphi \quad \Leftrightarrow \quad A_{min}(\langle s, \varphi \rangle) = 0$$

Encoding Example ($\varphi = true$)

We have the empty target-set and $max(\emptyset) = 0$, hence

$$A_{min}(\langle s, true \rangle) = 0$$

Encoding Example ($\varphi = false$)

We have the trivial case, as $\langle s, false \rangle$ has no hyper-edges, hence

$$A_{min}(\langle s, false \rangle) = \infty$$

Model Checking with SDG Example

If we take the WKS

and want to determine if

$$s \models E \ a \ U_{\leq 8} \ b$$

then we can encode this as:

Fixed-Point Algorithms

Global

- Up-front construction of SDG.
- Repeated application of *F*.
- Terminates with A_{min} for all configurations.

Local

- On-the-fly construction of SDG.
- Top-down w. backwards propagation.
- Terminates with A_{min} for the initial configuration.

Model Checking with WKTool

Wł	Tool	4-Buffered Alternating Bit	t Protocol		Save	Load 🔻	Delete 🔻	Export	Visualize	Help	р
5 6 7 8 9	# <cransma # <racks> # <rx> # <sackx> # <deliver # Sender</deliver </sackx></rx></racks></cransma 	Medium S Medium R Receive M	eorum S ender R eceive R edium S	eceive ack > eceive x eceive x end ack x						VCCS W	/KS =
11 12 13	Sender : Ready0 : Ready1 :	<pre>= Ready0; = <send>.Sending0; = <send>.Sending1 + 0</send></send></pre>	ops;								
	TypeErr	or, Line 13, Column 3 [.]	1: Process co	instant "Oop	s" isn't defir	ied ×					
14 15	Sending0 : Sending1 :	<pre>= <transmit0!>.send0: = <transmit1!>.send1:</transmit1!></transmit0!></pre>	(<rack0>.Rea</rack0>	dy1 + <racki dv0 + <racki< td=""><td><pre>1>.Sending0 + 0>.Sending1 +</pre></td><td><tau>.Sen</tau></td><td>iing0);</td><td></td><td></td><td></td><td></td></racki<></racki 	<pre>1>.Sending0 + 0>.Sending1 +</pre>	<tau>.Sen</tau>	iing0);				
16 17	# Receiver		(,-							
18	Receiver :	= Receive0;			_						٣
Status	s State	Formula		Time	Form	nula is	Satisfia	ble			
~	System	+ We can have 1 messa EF(c= 41 delivered ==	ges delive	83 ms 🛛 🛛	Cover-	edges	1				
		and the second s			Hyper-	edges	5720				
*	System	# We deliver the same AG delivered (!ser	d0 A !s.	21 ms 🛛 🛪	S X Configurations 2551	2551					
					Iteratio	ons	11115				
+ Ad	+ Add Property				Queue	slze	,	~~~~	, max 915		
					Search	strategy	Depth First	Search			
					Encodi Engine	ng /	Symbolic /	Local			
							🖌 Edit Prope	rty			

http://wktool.jonasfj.dk/

Experiments

Evaluation of DG vs. SDG and local vs. global for SDG. Models:

- Leader Election
- Alternating Bit Protocol
- Task Graph Scheduling problems for 2 processors

Direct vs. Symbolic (Scaling Bound)

Leader election with DG and SDG encodings using global algorithms.

Comparing Global and Local for SDGs

Alternating bit protocol with buffer size 9 (satisfied) and 8 (unsatisfied).

Global vs. Local on 180 Task Graphs

Comparing Global and Local for SDGs

Task graphs T0, T1 and T2 with 5 tasks and nested WCTL properties.

Conclusion

Future work:

- Alternating fixed-points for *full* WCTL logic.
- Lower-bound constraints on temporal operators.
- Heuristics for search strategy.